

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Logic Gates

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW1 is out
- It is due on Monday Aug 27 @ 4pm.
- Submit it on paper before the start of the lecture
- No late homeworks will be accepted.
- Staple all of your pages
- Please write clearly on the first page:
- your name
- student ID
- lab section letter

Labs Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- You must print the answer sheet and do the prelab before you go to the lab.
- The TAs will check your prelab answers at the beginning of the recitation. If you don't have it done you'll lose 20\% of the lab grade for that lab.

A Binary Switch

(a) Two states of a switch

(b) Symbol for a switch

A Light Controlled by a Switch

(a) Simple connection to a battery
[Figure 2.2a from the textbook]

A Light Controlled by a Switch

(b) Using a ground connection as the return path

The Logical AND function (series connection of the switches)

[Figure 2.3a from the textbook]

The Logical OR function (parallel connection of the switches)

[Figure 2.3b from the textbook]

A series-parallel connection of the switches

[Figure 2.4 from the textbook]

An Inverting Circuit

[Figure 2.5 from the textbook]

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

Truth Tables for AND and OR

[Figure 2.6b from the textbook]

Logic Gates with n Inputs

AND gate

OR gate
[Figure 2.8 from the textbook]

Truth Table for 3-input AND and OR

x_{1}	x_{2}	x_{3}	$x_{1} \cdot x_{2} \cdot x_{3}$	$x_{1}+x_{2}+x_{3}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

[Figure 2.7 from the textbook]

Example of a Logic Circuit Implemented with Logic Gates

[Figure 2.8 from the textbook]

Example of a Logic Circuit Implemented with Logic Gates

[Figure 2.8 from the textbook]

Network Analysis

Network Analysis

Network Analysis

Network Analysis

Network Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

[Figure 2.10 from the textbook]

Timing Diagram

[Figure 2.10 from the textbook]

Truth Table for this Network

[Figure 2.10 from the textbook]

Functionally Equivalent Networks

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Functionally Equivalent Networks

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

(d) Network that implements $g=\bar{x}_{1}+x_{2}$
[Figure 2.10 from the textbook]

The XOR Logic Gate

(a) Two switches that control a light

(b) Truth table
[Figure 2.11 from the textbook]

The XOR Logic Gate

[Figure 2.11 from the textbook]

XOR Analysis

[Figure 2.11c from the textbook]

XOR Analysis ($\mathrm{x}=0, \mathrm{y}=0$)

XOR Analysis ($\mathrm{x}=0, \mathrm{y}=1$)

XOR Analysis ($\mathrm{x}=1, \mathrm{y}=0$)

XOR Analysis ($\mathrm{x}=1, \mathrm{y}=1$)

Addition of Binary Numbers

[Figure 2.12 from the textbook]

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

[Figure 2.12 from the textbook]

Addition of Binary Numbers

a	0	0	1	1
$+b$	+0	+1	+0	+1
$s_{1} s_{0}$	$\frac{+0}{01}$	01	10	

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

$y a$	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b		s_{1}
s_{0}			
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

		$?$	
a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

	AND			
a	b	s_{1}	s_{0}	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

	$?$		
a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

		XOR		
a	b	s_{1}	s_{0}	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

The following examples came from this book

Click to LOOK INSIDE!

atm thing out, rana thing ap

Make:
 Electronics

Learning by
Disecovery

[Platt 2009]

[Platt 2009]

[Platt 2009]

Questions?

THE END

