

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW2 is due on Wednesday Sep 5 @ 4pm
- Please write clearly on the first page (in block capital letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Staple all of your pages
- If any of these are missing, then you will lose 10% of your grade for that homework.

Administrative Stuff

- Next week we will start with Lab2
- It will be graded!
- Print the answer sheet for that lab and do the prelab at home. Otherwise you'll lose 20\% of your grade for that lab.

Labs Next Week

- If your lab is on Mondays, i,e.,
- Section P: Mondays, 12:10-3:00 pm (Coover Hall, room 1318)
- You will have 2 labs in one on September 10.
- That is, Lab \#2 and Lab \#3.

Labs Next Week

- If your recitation is on Mondays (Sections N \& P), please go to one of the other 11 recitations next week:
- Section U: Tuesday 11:00 AM - 1:50 PM (Coover Hall, room 2050) Section M: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2050) Section Z: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 1318) Section J: Wednesday 8:00 AM - 10:50 AM (Coover Hall, room 1318) Section W: Wednesday 11:00 AM - 1:50 PM (Coover Hall, room 1318) Section T: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 1318) Section Q: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 2050) Section V: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318) Section L: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 1318) Section K: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 1318) Section G: Friday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
- This is only for next week. And only for the recitation (first hour). You won't be able to stay for the lab as the sections are full.

Quick Review

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

x	\bar{x}
0	1
1	0

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

Truth Tables for AND and OR

[Figure 2.6b from the textbook]

Operator Precedence

- In regular arithmetic and algebra, multiplication takes precedence over addition
- This is also true in Boolean algebra

Operator Precedence

(three different ways to write the same)

DeMorgan's Theorem

$$
\begin{array}{ll}
\text { 15a. } & \overline{x \cdot y}=\bar{x}+\bar{y} \\
\text { 15b. } & \overline{x+y}=\bar{x} \cdot \bar{y}
\end{array}
$$

Function Synthesis

Synthesize the Following Function

\mathbf{x}_{1}	\mathbf{x}_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$f_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$f_{01}\left(\mathbf{x}_{1}, x_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=1 \bullet \mathrm{f}_{00}+1 \bullet \mathrm{f}_{01}+0 \bullet \mathrm{f}_{10}+1 \bullet \mathrm{f}_{11}
$$

2) Write the expressions for all four

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathrm{f}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{01}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{10}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\underbrace{1 \bullet \mathrm{f}_{00}}+\underbrace{1 \bullet \mathrm{f}_{01}}+\underbrace{0 \bullet \mathrm{f}_{10}}+\underbrace{1 \bullet \mathrm{f}_{11}}
$$

2) Write the expressions for all four

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\underbrace{1 \bullet \mathrm{f}_{00}}_{\bar{x}_{1} \bar{x}_{2}}+\underbrace{1 \bullet \mathrm{f}_{01}}_{\bar{x}_{1} x_{2}}+\underbrace{0 \bullet \mathrm{f}_{10}}_{0}+\underbrace{1 \bullet \mathrm{f}_{11}}_{x_{1} x_{2}}
$$

3) Then just add them together

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\underbrace{1 \bullet \mathrm{f}_{00}}+\underbrace{1 \bullet \mathrm{f}_{01}}+\underbrace{0 \bullet \mathrm{f}_{10}}+\underbrace{1 \bullet \mathrm{f}_{11}}
$$

3) Then just add them together

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathrm{f}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

A function to be synthesized

[Figure 2.19 from the textbook]

Let's look at it row by row. How can we express the last row?

Let's look at it row by row. How can we express the last row?

Let's look at it row by row. How can we express the last row?

What about this row?

What about this row?

What about this row?

What about the first row?

What about the first row?

What about the first row?

Finally, what about the zero?

$1-\left(\begin{array}{l}x_{1} \\ x_{2}\end{array}\right.$

Putting it all together

Let's verify that this circuit implements correctly the target truth table

Putting it all together

Putting it all together

Canonical Sum-Of-Products (SOP)

$f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}$

[Figure 2.20a from the textbook]

Summary of This Procedure

- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if $x_{i}=1$ enter it as x_{i}, otherwise use \bar{x}_{i}
- Sum all of these products (OR gate) to get the function

Two implementations for the same function

(a) Canonical sum-of-products

(b) Minimal-cost realization

Simplification Steps

$f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}$

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2} \quad \begin{aligned}
& \text { replicate } \\
& \text { this term }
\end{aligned}
$$

Simplification Steps

$f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}$
group
these terms

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+\bar{x}_{1} x_{2}
$$

These two terms are trivially equal to 1
$f\left(x_{1}, x_{2}\right)=\left(x_{1}+\bar{x}_{1}\right) x_{2}+\bar{x}_{1}\left(\bar{x}_{2}+x_{2}\right)$
$f\left(x_{1}, x_{2}\right)=1 \cdot x_{2}+\bar{x}_{1} \cdot 1$

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+\bar{x}_{1} x_{2}
$$

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+\bar{x}_{1}\right) x_{2}+\bar{x}_{1}\left(\bar{x}_{2}+x_{2}\right)
$$

Drop the 1's

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=1 \cdot x_{2}+\bar{x}_{1} \cdot 1 \\
& f\left(x_{1}, x_{2}\right)=x_{2}+\bar{x}_{1}
\end{aligned}
$$

Minimal-cost realization

[Figure 2.20b from the textbook]

Let's look at another problem

(a) Conveyor and sensors

s_{1}	s_{2}	s_{3}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(b) Truth table
[Figure 2.21 from the textbook]

Let's look at another problem

s_{1}	s_{2}	s_{3}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

[Figure 2.21b from the textbook]

Let's look at another problem

s_{1}	s_{2}	s_{3}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Let's look at another problem

$$
\begin{array}{lll|ll}
s_{1} & s_{2} & s_{3} & f & \\
\cline { 1 - 2 } 0 & 0 & 0 & 0 & \\
0 & 0 & 1 & 1 & \bar{s}_{1} \bar{s}_{2} s_{3} \\
0 & 1 & 0 & 0 & \bar{s}_{1} s_{2} s_{3} \\
0 & 1 & 1 & 1 & \\
1 & 0 & 0 & 0 & \\
1 & 0 & 1 & 1 & s_{1} \bar{s}_{2} s_{3} \\
1 & 1 & 0 & 1 & s_{1} s_{2} \bar{s}_{3} \\
1 & 1 & 1 & 1 & s_{1} s_{2} s_{3}
\end{array}
$$

Let's look at another problem

$$
\begin{array}{rrr|rl}
s_{1} & s_{2} & s_{3} & f \\
\hline & \begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
s_{1} \bar{s}_{2} s_{3} \\
0 & 1 & 1 & 1
\end{array} & \bar{s}_{1} s_{2} s_{3} \\
1 & 0 & 0 & 0 & \\
1 & 0 & 1 & 1 & s_{1} \bar{s}_{2} s_{3} \\
1 & 1 & 0 & 1 & s_{1} s_{2} \bar{s}_{3} \\
1 & 1 & 1 & 1 & s_{1} s_{2} s_{3} \\
f=\bar{s}_{1} \bar{s}_{2} s_{3}+\bar{s}_{1} s_{2} s_{3}+s_{1} \bar{s}_{2} s_{3}+s_{1} s_{2} \bar{s}_{3}+s_{1} s_{2} s_{3}
\end{array}
$$

Let's look at another problem (minimization)

$$
\begin{aligned}
f & =\bar{s}_{1} \bar{s}_{2} s_{3}+\bar{s}_{1} s_{2} s_{3}+s_{1} \bar{s}_{2} s_{3}+s_{1} s_{2} s_{3}+s_{1} s_{2} \bar{s}_{3}+s_{1} s_{2} s_{3} \\
& =\bar{s}_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{2}\left(\bar{s}_{3}+s_{3}\right) \\
& =\bar{s}_{1} s_{3}+s_{1} s_{3}+s_{1} s_{2} \\
& =s_{3}+s_{1} s_{2}
\end{aligned}
$$

Let's look at another problem (minimization)

$$
\begin{aligned}
f & =\bar{s}_{1} \bar{s}_{2} s_{3}+\bar{s}_{1} s_{2} s_{3}+s_{1} \bar{s}_{2} s_{3}+s_{1} s_{2} s_{3}+s_{1} s_{2} \bar{s}_{3}+s_{1} s_{2} s_{3} \\
& =\bar{s}_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{2}\left(\bar{s}_{3}+s_{3}\right) \\
& =\bar{s}_{1} s_{3}+s_{1} s_{3}+s_{1} s_{2} \\
& =s_{3}+s_{1} s_{2}
\end{aligned}
$$

Minterms and Maxterms

Row number	x_{1}	x_{2}	Minterm	Maxterm
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	$M_{0}=x_{1}+x_{2}$
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	$M_{1}=x_{1}+\overline{x_{2}}$
2	1	0	$m_{2}=x_{1} \overline{x_{2}}$	$M_{2}=\bar{x}_{1}+x_{2}$
3	1	1	$m_{3}=x_{1} x_{2}$	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$

Minterms and Maxterms

Row number	x_{1}	x_{2}	Minterm	Maxterm
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	$M_{0}=x_{1}+x_{2}$
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	$M_{1}=x_{1}+\overline{x_{2}}$
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	$M_{2}=\bar{x}_{1}+x_{2}$
3	1	1	$m_{3}=x_{1} x_{2}$	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$

Use these for	Use these for
Sum-of-Products	Product-of-Sums
Minimization	Minimization
(1's of the function)	(0's of the function)

Sum-of-Products Form (uses the ones of the function)

Sum-of-Products Form
 (for the AND logic function)

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	0
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	0
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form
 (for the AND logic function)

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	0
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	0
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form (for the AND logic function)

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	0
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	0
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

$$
f\left(x_{1}, x_{2}\right)=m_{3}=x_{1} x_{2}
$$

(In this case there is just one product and there is no need for a sum)

Another Example

Sum-of-Products Form

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	1
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	1
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	1
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	1
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	1
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	1
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

$$
\begin{aligned}
f & =m_{0} \cdot 1+m_{1} \cdot 1+m_{2} \cdot 0+m_{3} \cdot 1 \\
& =m_{0}+m_{1}+m_{3} \\
& =\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+x_{1} x_{2}
\end{aligned}
$$

Product-of-Sums Form

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

Product-of-Sums Form (for the OR logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

Product-of-Sums Form (for the OR logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

$$
f\left(x_{1}, x_{2}\right)=M_{0}=x_{1}+x_{2}
$$

(In this case there is just one sum and there is no need for a product)

Another Example

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

We need to minimize using the zeros of the function f. But let's first minimize the inverse of f, i.e., $\overline{\mathrm{f}}$.

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

$\bar{f}\left(x_{1}, x_{2}\right)=m_{2}$

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

$$
\begin{aligned}
\overline{\bar{f}}=f & =\overline{x_{1} \bar{x}_{2}} & \bar{f}\left(x_{1}, x_{2}\right) & =m_{2} \\
& =\bar{x}_{1}+x_{2} & & =x_{1} \bar{x}_{2}
\end{aligned}
$$

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

$$
\begin{array}{rlrl}
\overline{\bar{f}}=f & =\overline{x_{1} \bar{x}_{2}} & \bar{f}\left(x_{1}, x_{2}\right) & =m_{2} \\
& =\bar{x}_{1}+x_{2} & & \\
& =x_{1} \bar{x}_{2}
\end{array}
$$

$f=\bar{m}_{2}=M_{2}$

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

[Figure 2.22 from the textbook]

A three-variable function

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

[Figure 2.23 from the textbook]

Sum-of-Products Form

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products Form

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}$

Sum-of-Products Form

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}$

$$
\begin{aligned}
f & =\left(\bar{x}_{1}+x_{1}\right) \bar{x}_{2} x_{3}+x_{1}\left(\bar{x}_{2}+x_{2}\right) \bar{x}_{3} \\
& =1 \cdot \bar{x}_{2} x_{3}+x_{1} \cdot 1 \cdot \bar{x}_{3} \\
& =\bar{x}_{2} x_{3}+x_{1} \bar{x}_{3}
\end{aligned}
$$

A three-variable function

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

[Figure 2.23 from the textbook]

Product-of-Sums Form

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Product-of-Sums Form

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
\begin{aligned}
f & =\overline{m_{0}+m_{2}+m_{3}+m_{7}} \\
& =\bar{m}_{0} \cdot \bar{m}_{2} \cdot \bar{m}_{3} \cdot \bar{m}_{7} \\
& =M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{7} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}\right)
\end{aligned}
$$

Product-of-Sums Form

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
\begin{gathered}
f=\left(\left(x_{1}+x_{3}\right)+x_{2}\right)\left(\left(x_{1}+x_{3}\right)+\bar{x}_{2}\right)\left(x_{1}+\left(\bar{x}_{2}+\bar{x}_{3}\right)\right)\left(\bar{x}_{1}+\left(\bar{x}_{2}+\bar{x}_{3}\right)\right) \\
f=\left(x_{1}+x_{3}\right)\left(\bar{x}_{2}+\bar{x}_{3}\right)
\end{gathered}
$$

Shorthand Notation

- Sum-of-Products

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum\left(m_{1}, m_{4}, m_{5}, m_{6}\right)
$$

or

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(1,4,5,6)
$$

- Product-of-sums

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\Pi\left(M_{0}, M_{2}, M_{3}, M_{7}\right)
$$

or

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\Pi M(0,2,3,7)
$$

Two realizations of that function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization
[Figure 2.24 from the textbook]

The Cost of a Circuit

- Count all gates
- Count all inputs/wires to the gates

What is the cost of each circuit?

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization
[Figure 2.24 from the textbook]

What is the cost of this circuit?

Questions?

THE END

