

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

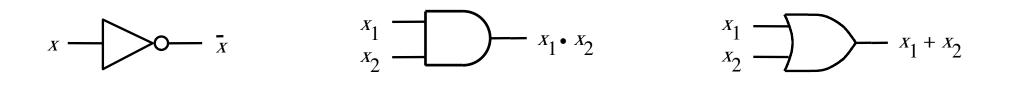
Administrative Stuff

- HW2 is due on Wednesday Sep 5 @ 4pm
- Please write clearly on the first page (in block capital letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
 - Staple all of your pages
- If any of these are missing, then you will lose 10% of your grade for that homework.

Administrative Stuff

- Next week we will start with Lab2
- It will be graded!
- Print the answer sheet for that lab and do the prelab at home. Otherwise you'll lose 20% of your grade for that lab.

Labs Next Week


- If your lab is on Mondays, i,e.,
- Section P: Mondays, 12:10 3:00 pm (Coover Hall, room 1318)
- You will have 2 labs in one on September 10.
- That is, Lab #2 and Lab #3.

Labs Next Week

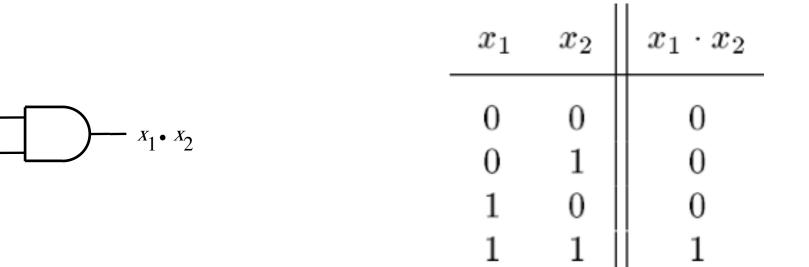
- If your recitation is on Mondays (Sections N & P), please go to one of the other 11 recitations next week:
- Section U: Tuesday 11:00 AM 1:50 PM (Coover Hall, room 2050) Section M: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2050) Section Z: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 1318) Section J: Wednesday 8:00 AM - 10:50 AM (Coover Hall, room 1318) Section W: Wednesday 11:00 AM - 1:50 PM (Coover Hall, room 1318) Section T: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 1318) Section Q: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318) Section V: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318) Section L: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 1318) Section K: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 1318) Section G: Friday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
- This is only for next week. And only for the recitation (first hour).
 You won't be able to stay for the lab as the sections are full.

Quick Review

The Three Basic Logic Gates

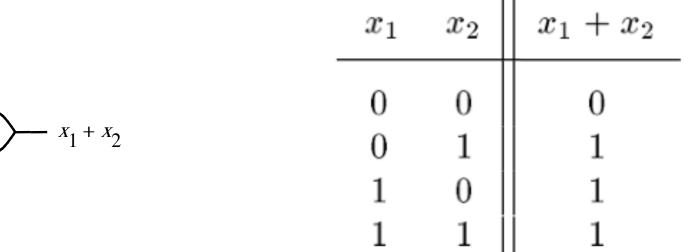

NOT gate

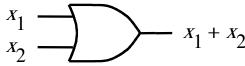
AND gate


OR gate

[Figure 2.8 from the textbook]

Truth Table for NOT


Truth Table for AND



 x_1

*x*₂

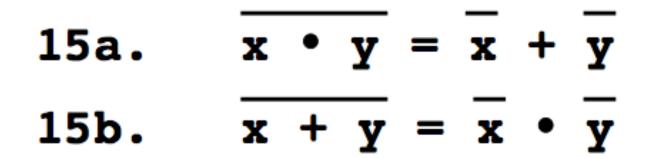
Truth Table for OR

Truth Tables for AND and OR

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	0 0 0	$egin{array}{c} 0 \ 1 \ 1 \end{array}$
1	1	1	1

AND OR

[Figure 2.6b from the textbook]


Operator Precedence

- In regular arithmetic and algebra, multiplication takes precedence over addition
- This is also true in Boolean algebra

Operator Precedence (three different ways to write the same)

 $x_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2$ $(x_1 \cdot x_2) + ((\overline{x}_1) \cdot (\overline{x}_2))$ $x_1x_2 + \overline{x}_1\overline{x}_2$

DeMorgan's Theorem

Function Synthesis

Synthesize the Following Function

x ₁	X ₂	f(x ₁ , x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

X ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

X ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

 $f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$

2) Write the expressions for all four

X ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$$

2) Write the expressions for all four

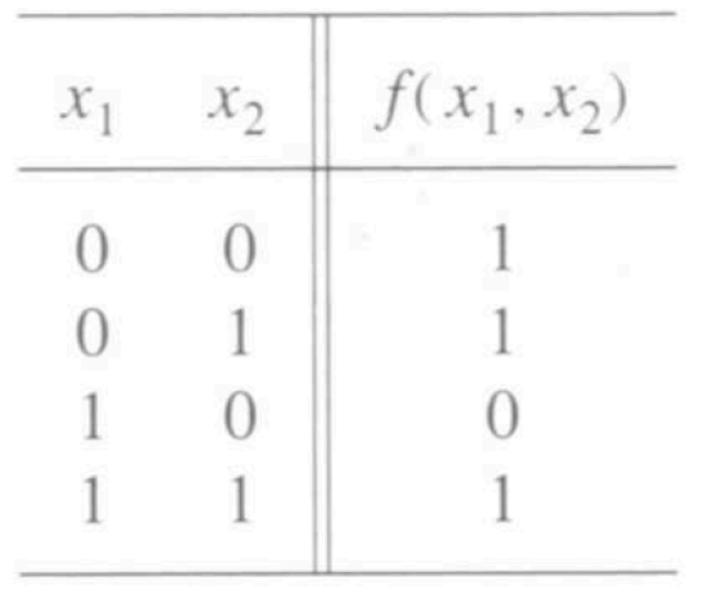
x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$$

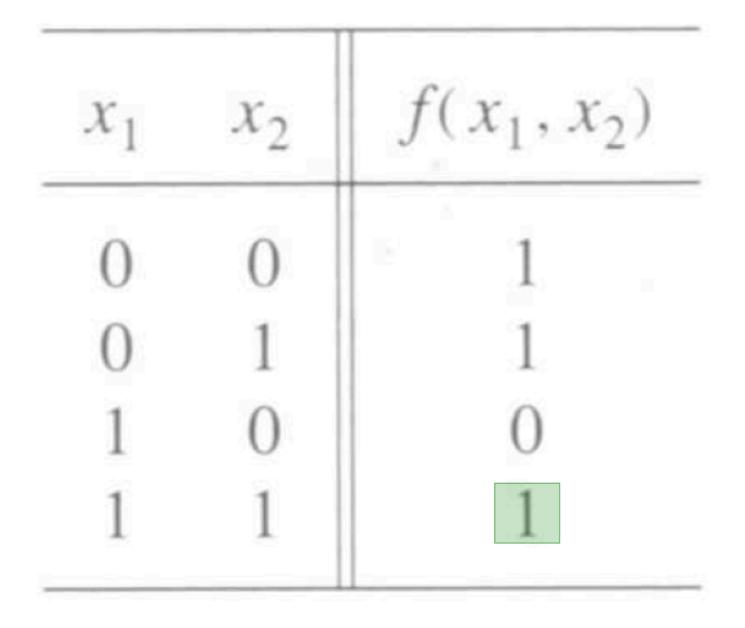
$$\overline{x}_1 \overline{x}_2 \quad \overline{x}_1 x_2 \quad 0 \quad x_1 x_2$$

3) Then just add them together

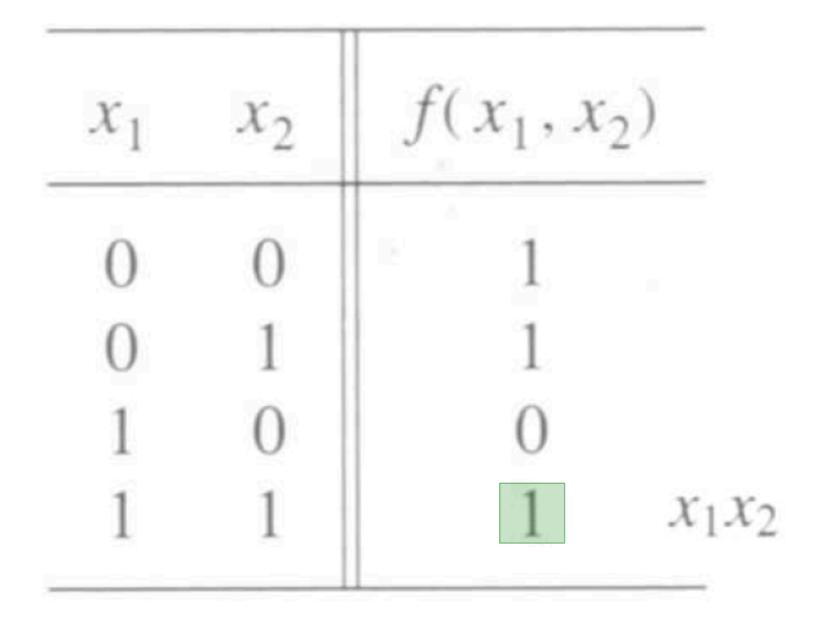
x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

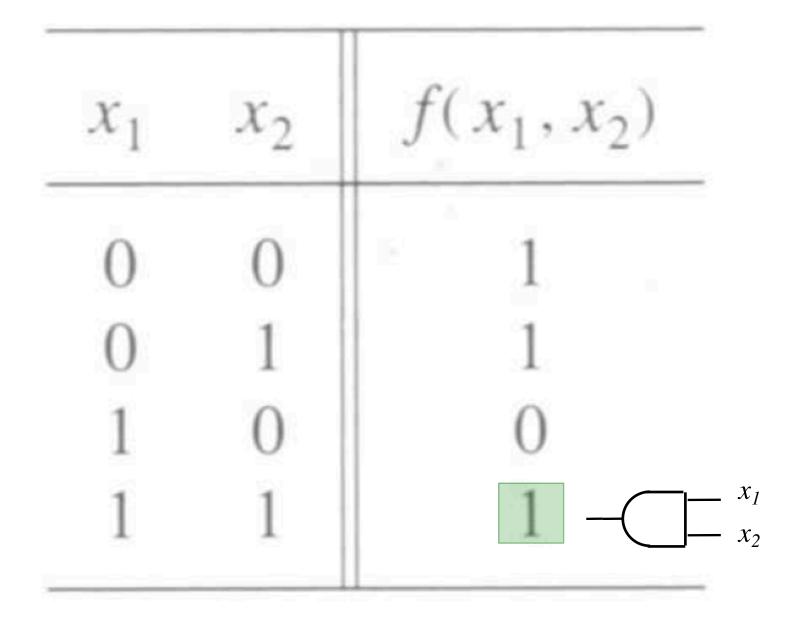

 $f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$ $f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$

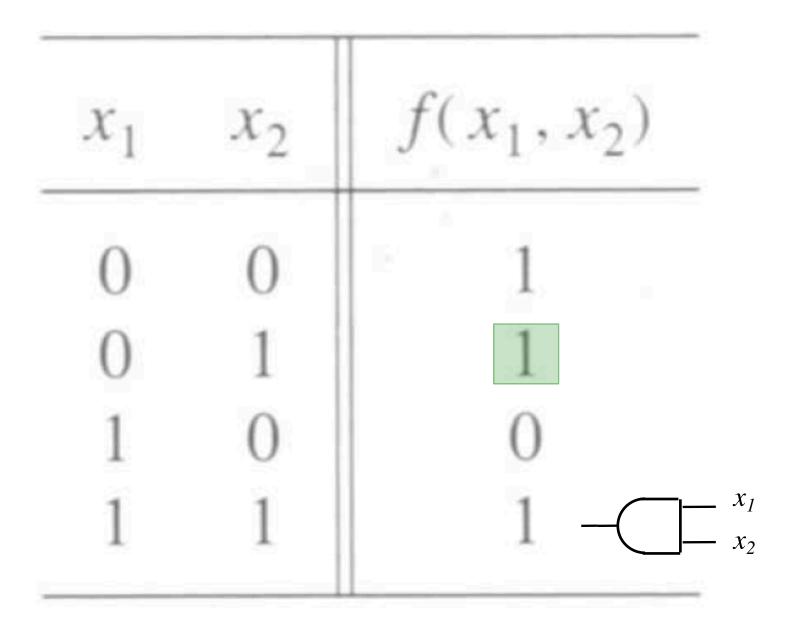
3) Then just add them together

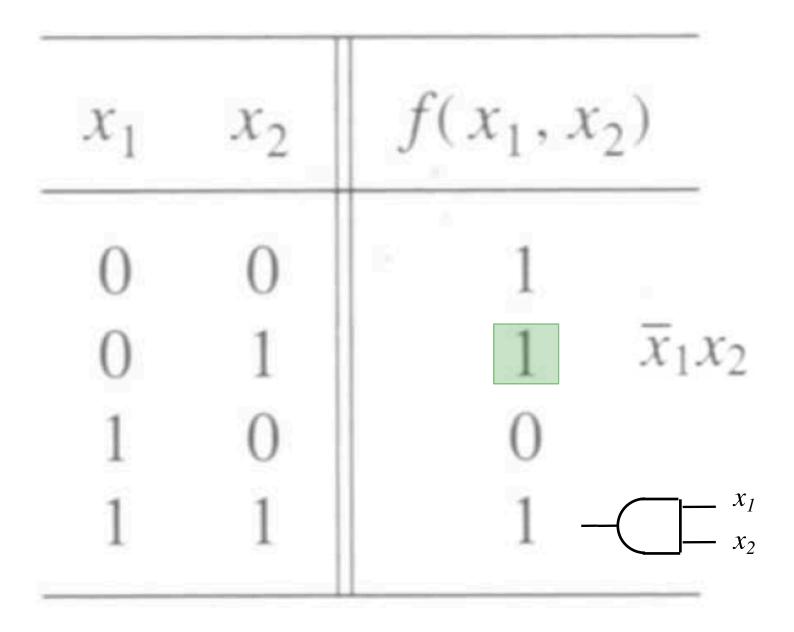

x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

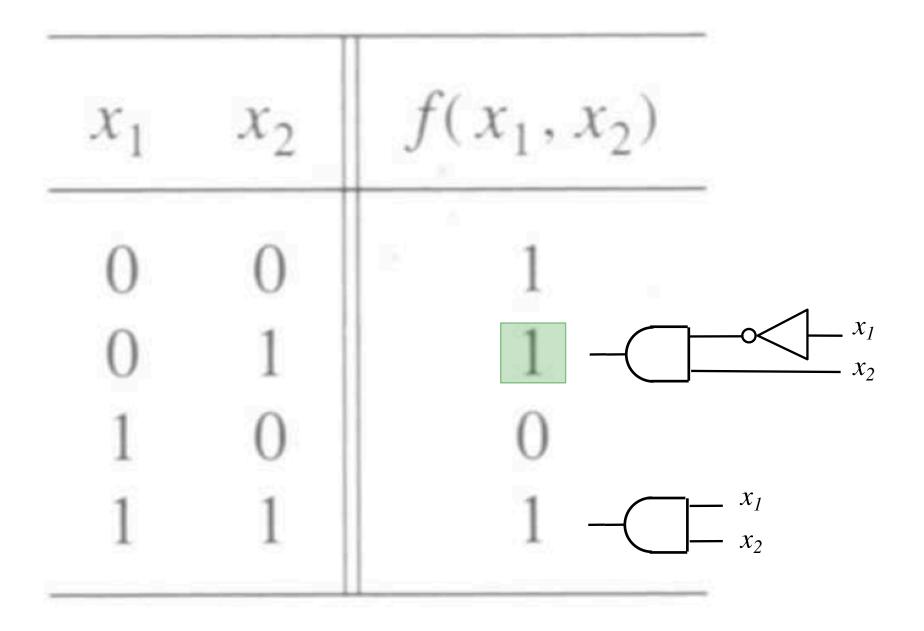
 $f(x_1, x_2) = \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + 0 + x_1 x_2$

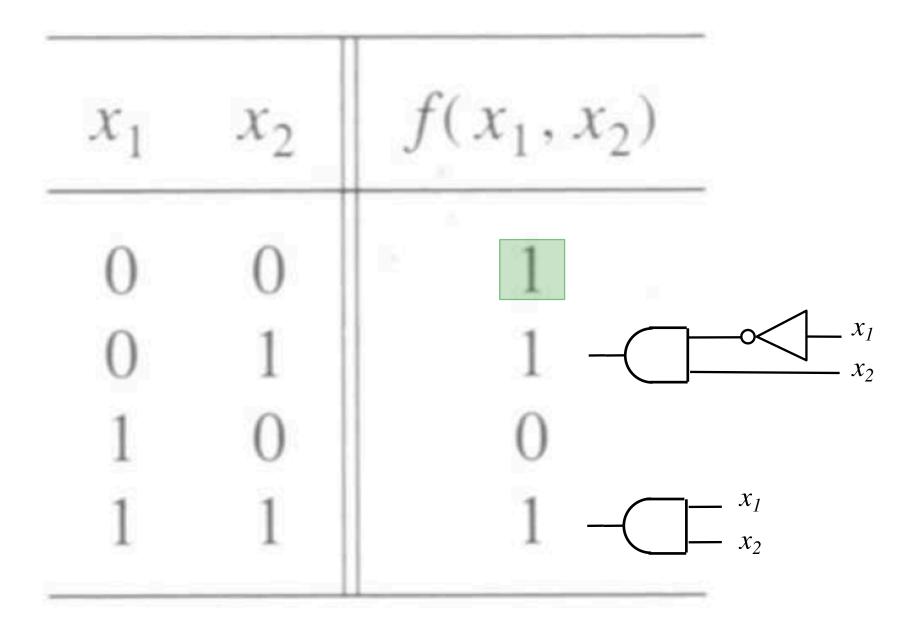

A function to be synthesized

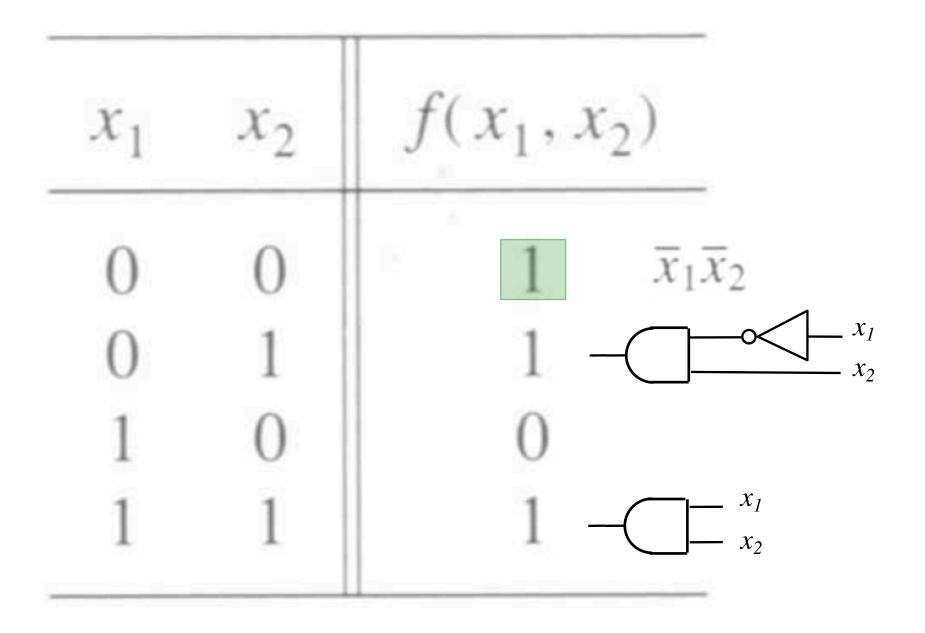

Let's look at it row by row. How can we express the last row?

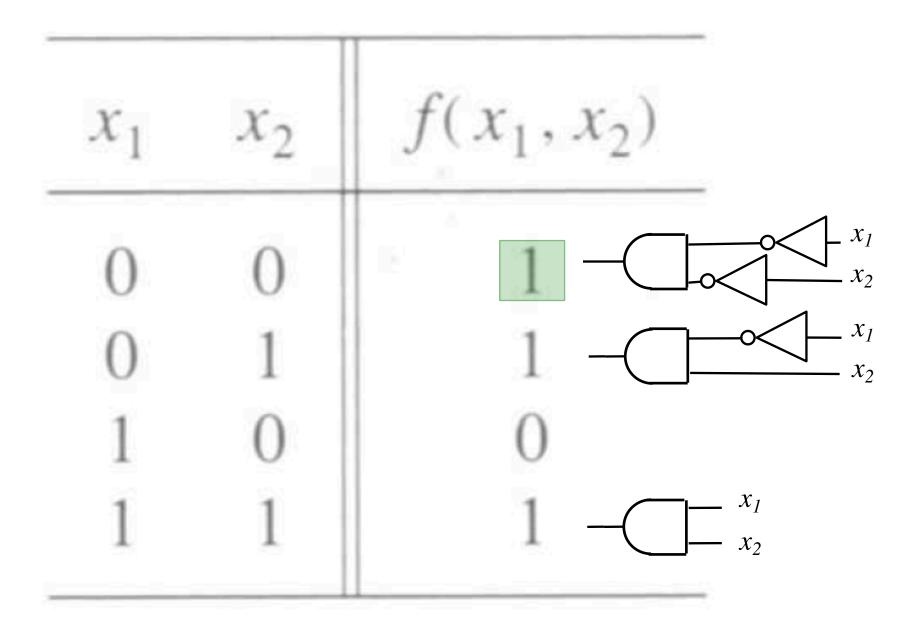

Let's look at it row by row. How can we express the last row?

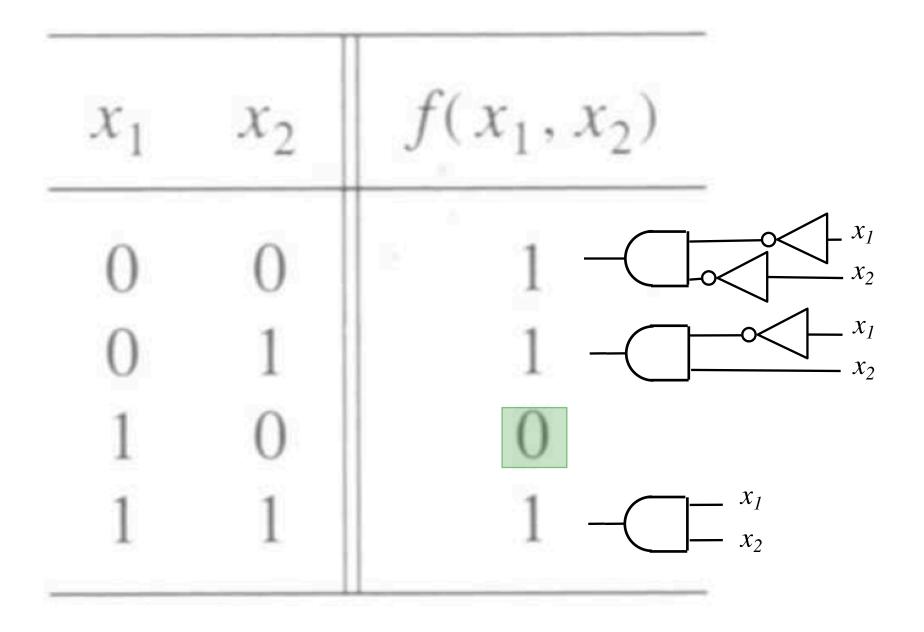

Let's look at it row by row. How can we express the last row?

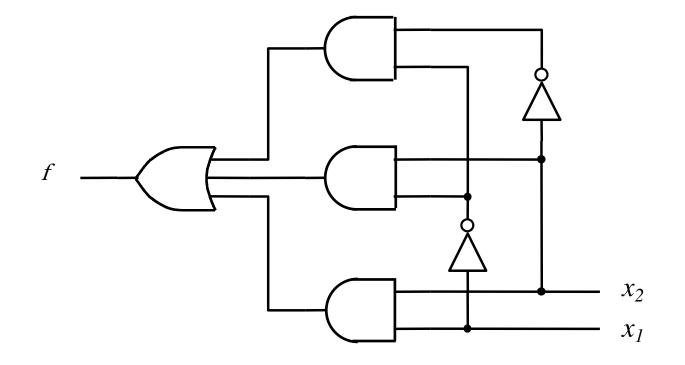

What about this row?

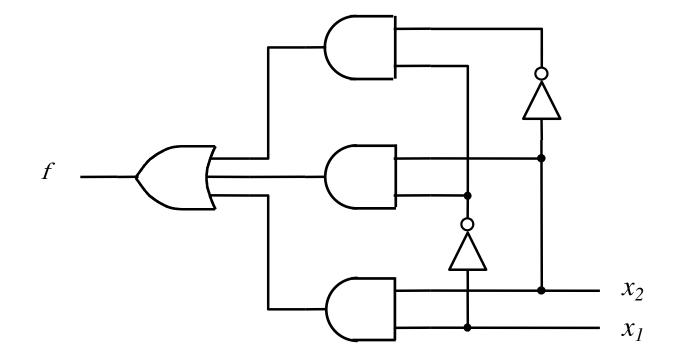

What about this row?

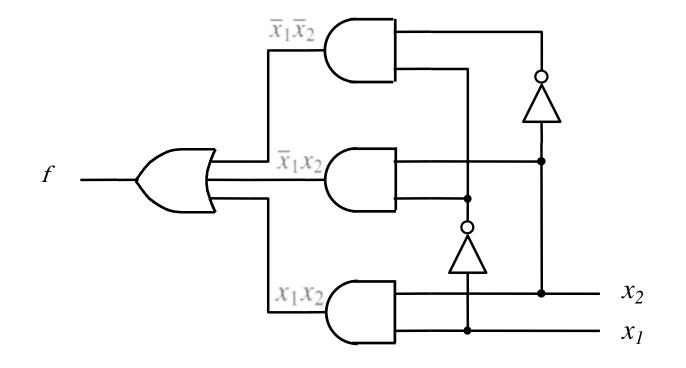

What about this row?

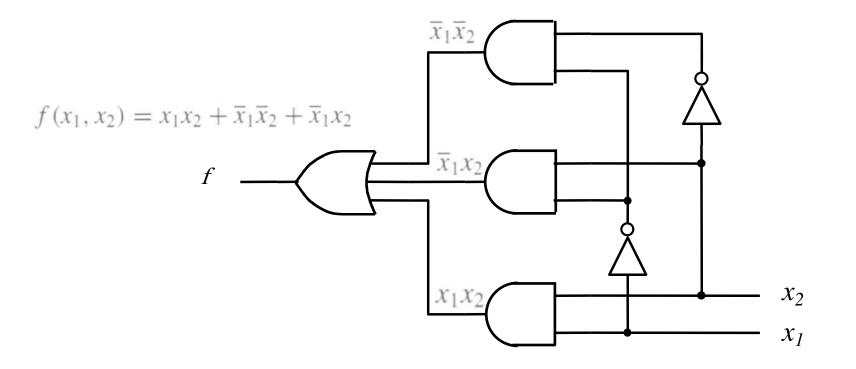

What about the first row?

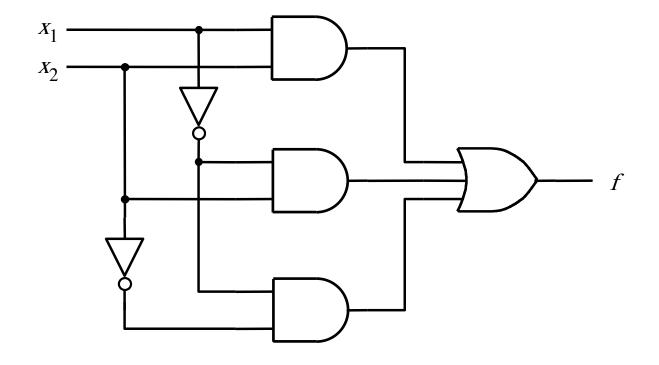

What about the first row?


What about the first row?


Finally, what about the zero?

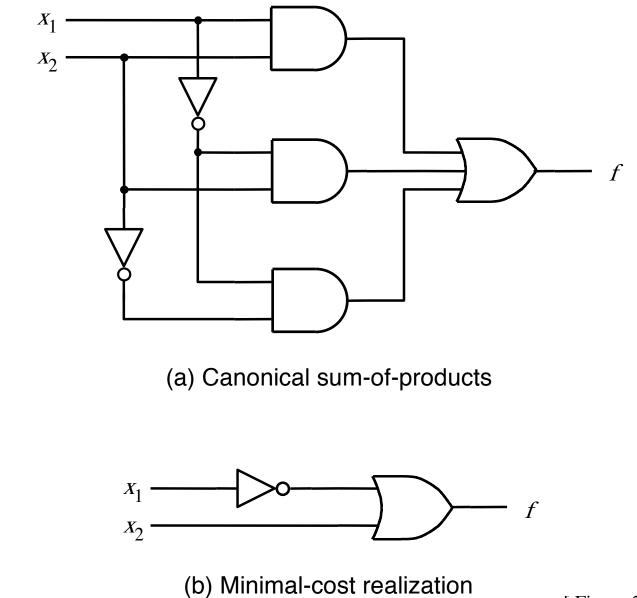

Putting it all together


Let's verify that this circuit implements correctly the target truth table


Putting it all together

Putting it all together

Canonical Sum-Of-Products (SOP)

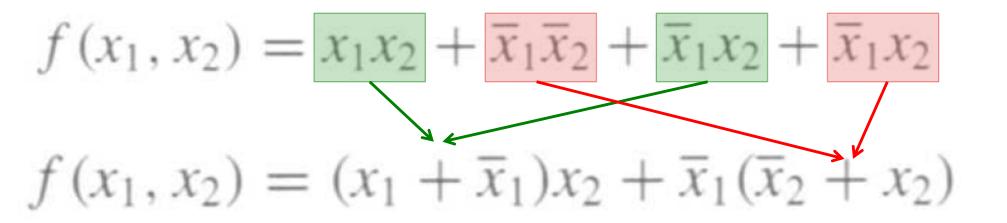

 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

[Figure 2.20a from the textbook]

Summary of This Procedure

- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if $x_i = 1$ enter it as x_i , otherwise use $\overline{x_i}$
- Sum all of these products (OR gate) to get the function

Two implementations for the same function

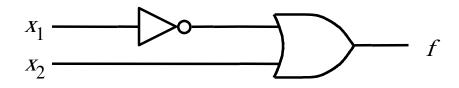

[Figure 2.20 from the textbook]

 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

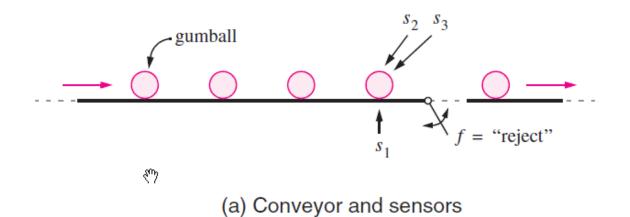
$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$$

group these terms

$$f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$$


 $f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + \bar{x}_1 x_2$ These two terms are trivially equal to 1 $f(x_1, x_2) = (x_1 + \bar{x}_1) x_2 + \bar{x}_1 (\bar{x}_2 + x_2)$

 $f(x_1, x_2) = 1 \cdot x_2 + \bar{x}_1 \cdot 1$


 $f(x_1, x_2) = x_1x_2 + \overline{x}_1\overline{x}_2 + \overline{x}_1x_2$ $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \overline{x}_1 x_2$ $f(x_1, x_2) = (x_1 + \overline{x}_1)x_2 + \overline{x}_1(\overline{x}_2 + x_2)$ Drop the 1's $f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$ $f(x_1, x_2) = x_2 + \overline{x}_1$

Minimal-cost realization

 $f(x_1, x_2) = x_2 + \overline{x}_1$

[Figure 2.20b from the textbook]

s_1	s_2	<i>s</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

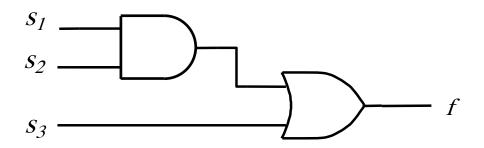
(b) Truth table

s_1	s_2	<i>s</i> ₃	f
0			
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1		1	1
1	1	0	1
1	1	1	1

<i>s</i> ₁	s_2	<i>s</i> ₃	f
0 0 0	0 0 1	0 1 0	0 1 0
0 1 1 1 1	1 0 1 1	1 0 1 0 1	1 0 1 1 1

<i>s</i> ₁ <i>s</i> ₂	s ₃	f	
$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	0 1 0 1 0 1 0 1	0 1 0 1 0 1 1 1	$\overline{s}_{1}\overline{s}_{2}s_{3}$ $\overline{s}_{1}\overline{s}_{2}s_{3}$ $s_{1}\overline{s}_{2}\overline{s}_{3}$ $s_{1}s_{2}\overline{s}_{3}$ $s_{1}s_{2}s_{3}$

 $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 \bar{s}_2 \bar{s}_3 + s_1 \bar{$


Let's look at another problem (minimization)

- $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$ = $\bar{s}_1 \bar{s}_3 (\bar{s}_2 + s_2) + s_1 \bar{s}_3 (\bar{s}_2 + s_2) + s_1 \bar{s}_2 (\bar{s}_3 + s_3)$ = $\bar{s}_1 \bar{s}_3 + s_1 \bar{s}_3 + s_1 \bar{s}_2$
 - $= s_3 + s_1 s_2$

Let's look at another problem (minimization)

 $f = \bar{s}_1 \bar{s}_2 s_3 + \bar{s}_1 s_2 s_3 + s_1 \bar{s}_2 s_3 + s_1 s_2 s_3 + s_1 s_2 \bar{s}_3 + s_1 s_2 \bar{s}_3$ = $\bar{s}_1 \bar{s}_3 (\bar{s}_2 + s_2) + s_1 s_3 (\bar{s}_2 + s_2) + s_1 s_2 (\bar{s}_3 + s_3)$ = $\bar{s}_1 s_3 + s_1 s_3 + s_1 s_2$

 $= s_3 + s_1 s_2$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x}_{2}$ $M_{2} = \overline{x}_{1} + x_{2}$ $M_{3} = \overline{x}_{1} + \overline{x}_{2}$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$

Use these for Sum-of-Products Minimization (1's of the function)

Use these for Product-of-Sums Minimization (0's of the function)

(uses the ones of the function)

Sum-of-Products Form (for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array}$

Sum-of-Products Form (for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 1\end{array}$

Sum-of-Products Form (for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 1\end{array}$

$$f(x_1, x_2) = m_3 = x_1 x_2$$

(In this case there is just one product and there is no need for a sum)

Another Example

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	$\begin{array}{c}1\\1\\0\\1\end{array}$

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	1 1 0 1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{array} $	1 1 0 1

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$

= $m_0 + m_1 + m_3$
= $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{vmatrix} M_0 = x_1 + x_2 \\ M_1 = x_1 + \overline{x_2} \\ M_2 = \overline{x_1} + x_2 \\ M_3 = \overline{x_1} + \overline{x_2} \end{vmatrix} $	0 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$\begin{array}{c} 0\\ 0\\ 1\\ 1\end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ \begin{array}{r} M_0 = x_1 + x_2 \\ M_1 = x_1 + \overline{x_2} \\ M_2 = \overline{x_1} + x_2 \\ M_3 = \overline{x_1} + \overline{x_2} \end{array} $	0 1 1 1

 $f(x_1, x_2) = M_0 = x_1 + x_2$

(In this case there is just one sum and there is no need for a product)

Another Example

Row number	x_1 x_2	Maxterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{ccc} 0 & 0 \ 0 & 1 \ 1 & 0 \ 1 & 1 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c}1\\1\\0\\1\end{array}$

We need to minimize using the zeros of the function f. But let's first minimize the inverse of f, i.e., \overline{f} .

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{c c} M_0 = x_1 + x_2 \\ M_1 = x_1 + \overline{x_2} \\ M_2 = \overline{x_1} + x_2 \\ M_3 = \overline{x_1} + \overline{x_2} \end{array} $	$\begin{array}{c}1\\1\\0\\1\end{array}$	0 0 1 0

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	$\begin{array}{c}1\\1\\0\\1\end{array}$	0 0 1 0

$$\overline{f}(x_1, x_2) = m_2$$
$$= x_1 \overline{x}_2$$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{c c} M_0 = x_1 + x_2 \\ M_1 = x_1 + \overline{x_2} \\ M_2 = \overline{x_1} + x_2 \\ M_3 = \overline{x_1} + \overline{x_2} \end{array} $	$\begin{array}{c}1\\1\\0\\1\end{array}$	0 0 1 0

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x_2}} \qquad \overline{f}(x_1, x_2) = m_2$$
$$= \overline{x_1} + x_2 \qquad = x_1 \overline{x_2}$$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	$\begin{array}{c} 1\\ 1\\ 0\\ 1 \end{array}$	$\begin{array}{c} 0\\ 0\\ 1\\ 0\end{array}$

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x_2}} \qquad \overline{f}(x_1, x_2) = m_2$$
$$= \overline{x_1} + x_2 \qquad = x_1 \overline{x_2}$$

$$f = \overline{m}_2 = M_2$$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

A three-variable function

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products Form

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products Form

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$

Sum-of-Products Form

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$

$$f = (\overline{x}_1 + x_1)\overline{x}_2x_3 + x_1(\overline{x}_2 + x_2)\overline{x}_3$$
$$= 1 \cdot \overline{x}_2x_3 + x_1 \cdot 1 \cdot \overline{x}_3$$
$$= \overline{x}_2x_3 + x_1\overline{x}_3$$

A three-variable function

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Row number	<i>x</i> ₁	x_2	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = \overline{m_0 + m_2 + m_3 + m_7}$$

= $\overline{m_0} \cdot \overline{m_2} \cdot \overline{m_3} \cdot \overline{m_7}$
= $M_0 \cdot M_2 \cdot M_3 \cdot M_7$
= $(x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + \overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2} + \overline{x_3})$

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
2 3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $f = ((x_1 + x_3) + x_2)((x_1 + x_3) + \overline{x}_2)(x_1 + (\overline{x}_2 + \overline{x}_3))(\overline{x}_1 + (\overline{x}_2 + \overline{x}_3))$

 $f = (x_1 + x_3)(\bar{x}_2 + \bar{x}_3)$

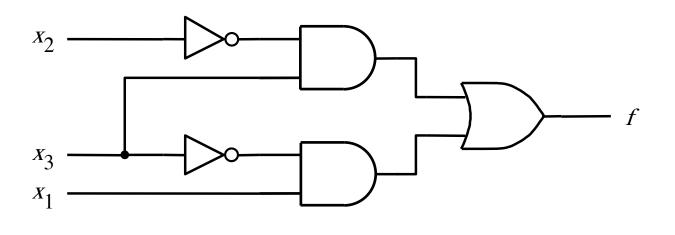
Shorthand Notation

Sum-of-Products

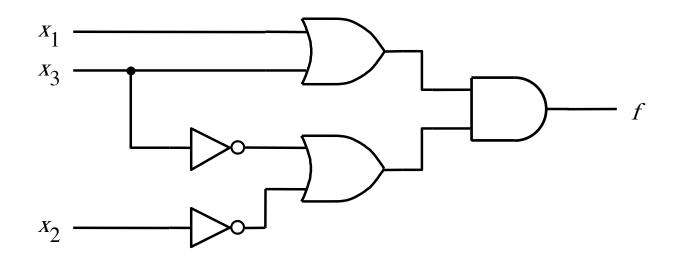
$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$


Product-of-sums

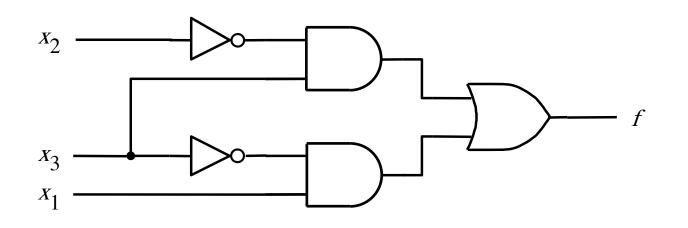
$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$


or

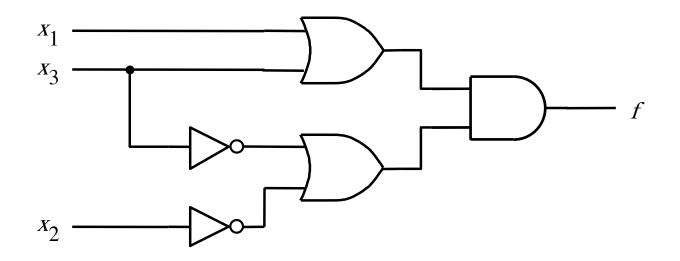
$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

Two realizations of that function

(a) A minimal sum-of-products realization

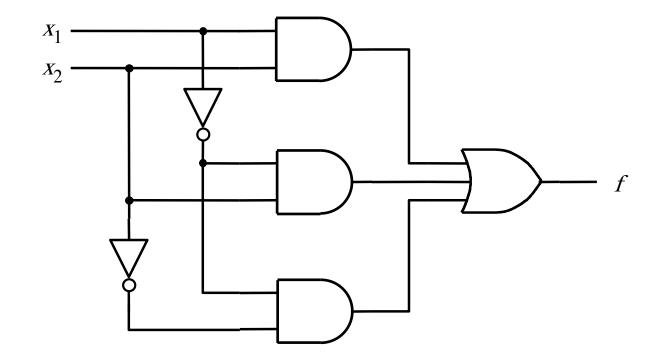


(b) A minimal product-of-sums realization


The Cost of a Circuit

- Count all gates
- Count all inputs/wires to the gates

What is the cost of each circuit?



(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

What is the cost of this circuit?

Questions?

THE END