

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

NAND and NOR Logic Networks

Administrative Stuff

HW2 is due on Wednesday Sep 5

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 10 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
 - Staple all of your pages together
- If any of these are missing, then you will lose 10% of your grade for that homework.

Labs Next Week

- If your lab is on Mondays, i,e.,
- Section P: Mondays, 12:10 3:00 pm (Coover Hall, room 1318)
- You will have 2 labs in one on September 10.
- That is, Lab #2 and Lab #3.

Labs Next Week

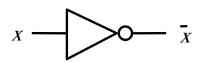
• If your recitation is on Mondays (Sections N & P), please go to one of the other 11 recitations next week:

```
Section U: Tuesday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
Section M: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2050)
Section Z: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 1318)
Section J: Wednesday 8:00 AM - 10:50 AM (Coover Hall, room 1318)
Section W: Wednesday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
Section T: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 1318)
Section Q: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 1318)
Section L: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 1318)
Section K: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 1318)
Section G: Friday 11:00 AM - 1:50 PM (Coover Hall, room 2050)
```

This is only for next week. And only for the recitation (first hour).
 You won't be able to stay for the lab as the sections are full.

Quick Review

The Three Basic Logic Gates



$$X_1$$
 X_2
 $X_1 \cdot X_2$

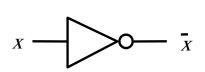
$$X_1$$
 X_2
 $X_1 + X_2$

NOT gate

AND gate

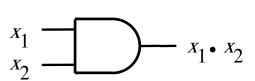
OR gate

Truth Table for NOT



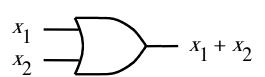
\mathcal{X}	$\overline{\mathcal{X}}$
0	1
1	0

Truth Table for AND



x_1	x_2	$x_1 \cdot x_2$
0	0	0 0
1	1	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$

Truth Table for OR



x_1	x_2	$x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1
		I

DeMorgan's Theorem

15a.
$$\frac{\overline{x} \cdot y}{x + y} = \frac{\overline{x} + \overline{y}}{\overline{x}}$$

15b. $\frac{\overline{x} \cdot y}{x + y} = \frac{\overline{x} \cdot \overline{y}}{\overline{y}}$

Synthesize the Following Function

X ₁	X ₂	f(x ₁ ,x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

X ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$$

$$\overline{x}_1 \overline{x}_2 \qquad \overline{x}_1 x_2 \qquad 0 \qquad x_1 x_2$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = \underline{1} \cdot f_{00} + \underline{1} \cdot f_{01} + \underline{0} \cdot f_{10} + \underline{1} \cdot f_{11}$$

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + \underline{0} + \underline{x}_1 x_2$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	$f_{10}(x_1, x_2)$	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$$

Example 2.10

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 x_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ \end{array}$	$egin{array}{c} 0 \\ 0 \\ \hline 0 \\ 1 \\ 1 \\ 1 \\ \end{array}$	0 0 1 1 0 0	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$$

The SOP expression is:

$$f = m_2 + m_3 + m_4 + m_6 + m_7$$

= $\bar{x}_1 x_2 \bar{x}_3 + \bar{x}_1 x_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 \bar{x}_3 + x_1 x_2 x_3$

This could be simplified as follows:

$$f = \overline{x}_1 x_2 (\overline{x}_3 + x_3) + x_1 (\overline{x}_2 + x_2) \overline{x}_3 + x_1 x_2 (\overline{x}_3 + x_3)$$

$$= \overline{x}_1 x_2 + x_1 \overline{x}_3 + x_1 x_2$$

$$= (\overline{x}_1 + x_1) x_2 + x_1 \overline{x}_3$$

$$= x_2 + x_1 \overline{x}_3$$

Example 2.12

Implement the function $f(x_1, x_2, x_3) = \prod M(0, 1, 5)$,

which is equivalent to $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \hline \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$$

The POS expression is:

$$f = M_0 \cdot M_1 \cdot M_5$$

= $(x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$

This could be simplified as follows:

$$f = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$$

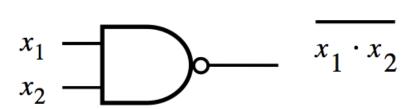
$$= ((x_1 + x_2) + x_3)((x_1 + x_2) + \overline{x}_3)(x_1 + (x_2 + \overline{x}_3))(\overline{x}_1 + (x_2 + \overline{x}_3))$$

$$= ((x_1 + x_2) + x_3\overline{x}_3)(x_1\overline{x}_1 + (x_2 + \overline{x}_3))$$

$$= (x_1 + x_2)(x_2 + \overline{x}_3)$$

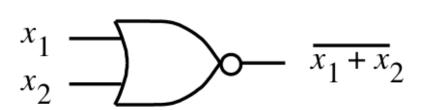
Two New Logic Gates

NAND Gate



x_1	x_2	f
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate



x_1	x_2	f
0	0	1
0	1	0
1	0	0
1	1	0

AND vs NAND

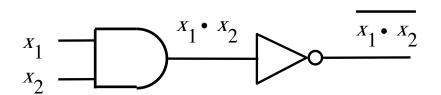
$$X_1$$
 X_2
 $X_1 \cdot X_2$

$$X_1$$
 X_2
 $X_1 \bullet X_2$

x_1	x_2	f
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|cccc}
x_1 & x_2 & f \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

AND followed by NOT = NAND

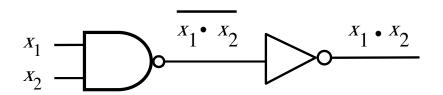


$$X_1$$
 X_2
 $X_1 \cdot X_2$

_	x_2		1
0	0	0	1
0	1		1
1	0	0	1
1	1	1	0

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

NAND followed by NOT = AND



$$X_1$$
 X_2
 $X_1 \cdot X_2$

x_1	x_2	1	1
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{array}{c|cccc}
 x_1 & x_2 & f \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 1 & 1 & 1
 \end{array}$$

OR vs NOR

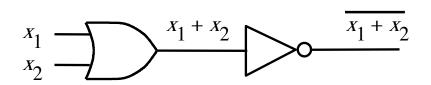
$$X_1$$
 X_2
 $X_1 + X_2$

$$x_1$$
 x_2
 $\overline{x_1 + x_2}$

x_1	x_2	f
0	0	0
0	1	1
1	0	1
1	1	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array}$$

OR followed by NOT = NOR

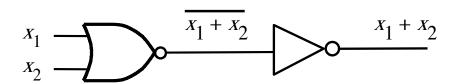


$$x_1$$
 x_2
 $\overline{x_1 + x_2}$

x_1	x_2	f	f
0		0	1
0		1	0
1	0	1	0
1	1	1	0

$$egin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array}$$

NOR followed by NOT = OR



$$X_1$$
 X_2
 $X_1 + X_2$

x_1	x_2	f	f
0	0	1	0
0	0 1 0 1	0	1
1	0	0	1
1	1	0	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

Why do we need two more gates?

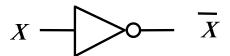
Why do we need two more gates?

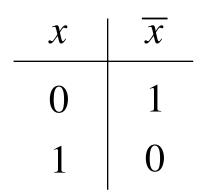
They can be implemented with fewer transistors.

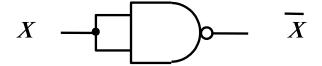
(more about this later)

They are simpler to implement, but are they also useful?

Building a NOT Gate with NAND

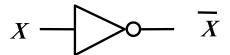


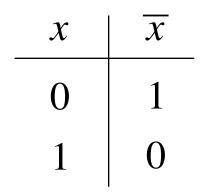


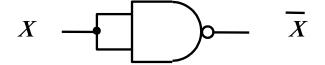


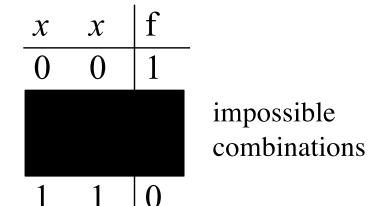
\mathcal{X}	\mathcal{X}	f
0	0	1
0	1	1
1	0	1
1	1	0

Building a NOT Gate with NAND

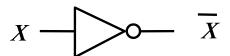


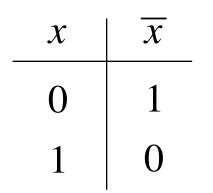


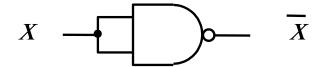


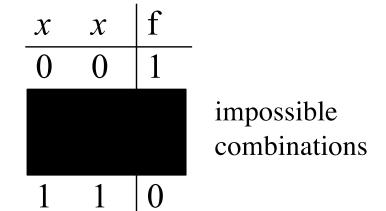


Building a NOT Gate with NAND



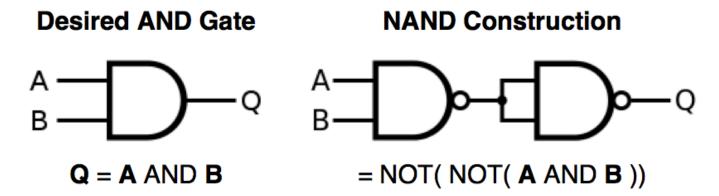






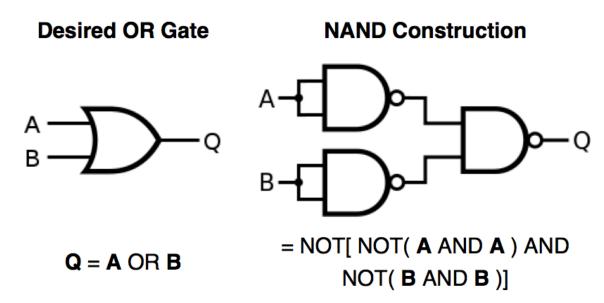
Thus, the two truth tables are equal!

Building an AND gate with NAND gates



Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR gate with NAND gates



Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

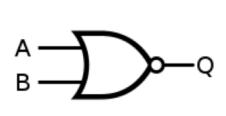
Implications

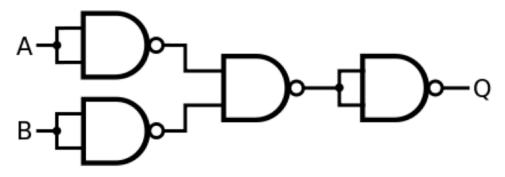
Any Boolean function can be implemented with only NAND gates!

NOR gate with NAND gates

Desired NOR Gate

NAND Construction





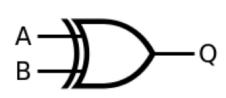
 $\mathbf{Q} = \mathsf{NOT}(\mathbf{A} \ \mathsf{OR} \ \mathbf{B})$

= NOT(NOT(A AND A) AND NOT(B AND B)]}

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	0

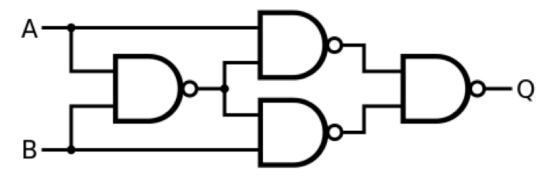
XOR gate with NAND gates

Desired XOR Gate



Q = A XOR B

NAND Construction

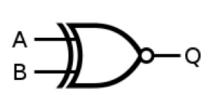


= NOT[NOT{**A** AND NOT(**A** AND **B**)} AND NOT{**B** AND NOT(**A** AND **B**)}]

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

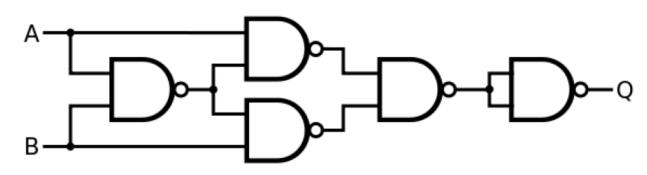
XNOR gate with NAND gates

Desired XNOR Gate



 $\mathbf{Q} = \mathsf{NOT}(\mathbf{A} \mathsf{XOR} \mathbf{B})$

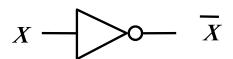
NAND Construction

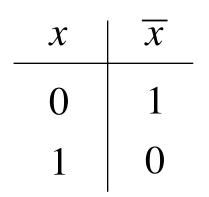


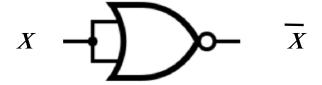
= NOT[NOT[NOT(**A** AND NOT(**A** AND **B**)} AND NOT(**B** AND NOT(**A** AND **B**)}]]

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

Building a NOT Gate with NOR

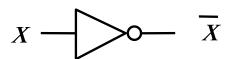


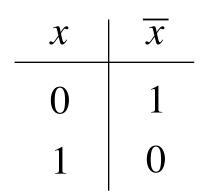


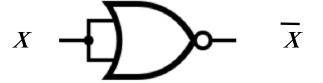


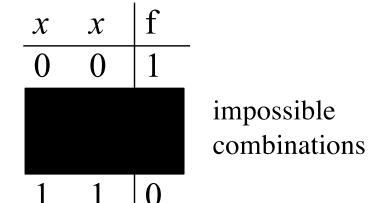
\mathcal{X}	\mathcal{X}	f
0	0	1
0	1	0
1	0	0
1	1	0

Building a NOT Gate with NOR

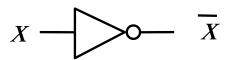


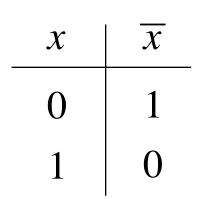


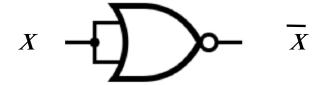


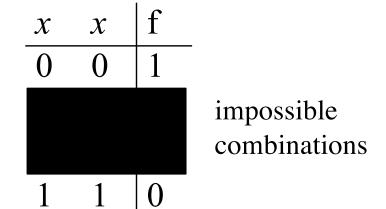


Building a NOT Gate with NOR









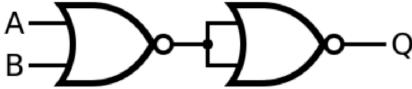
Thus, the two truth tables are equal!

Building an OR gate with NOR gates

Desired Gate

NOR Construction





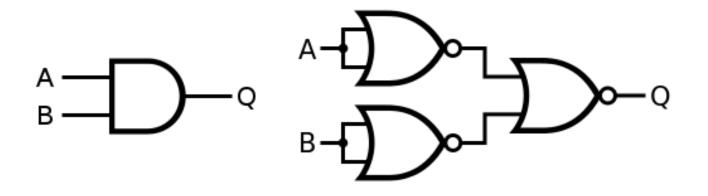
Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Let's build an AND gate with NOR gates

Let's build an AND gate with NOR gates

Desired Gate

NOR Construction



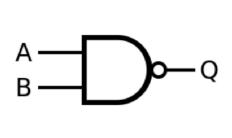
Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

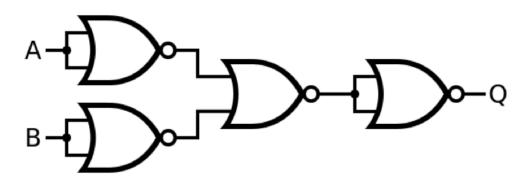
Implications

Any Boolean function can be implemented with only NOR gates!

NAND gate with NOR gates

Desired Gate

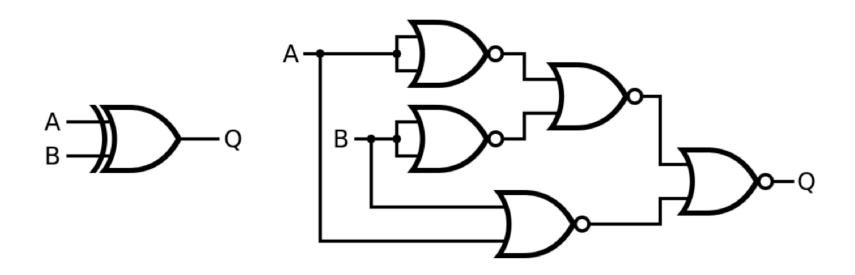




Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

XOR gate with NOR gates

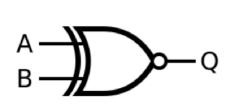


Truth Table

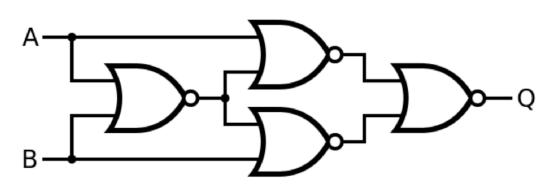
Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NOR gates

Desired XNOR Gate



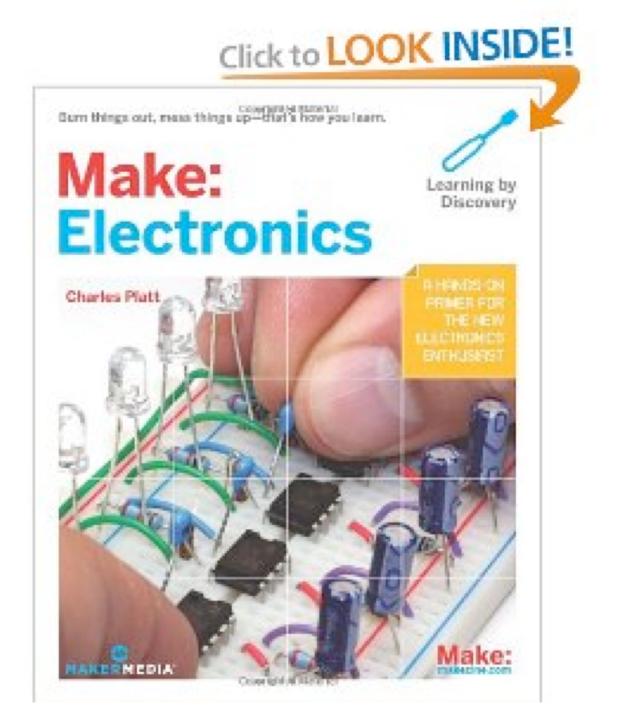
NOR Construction

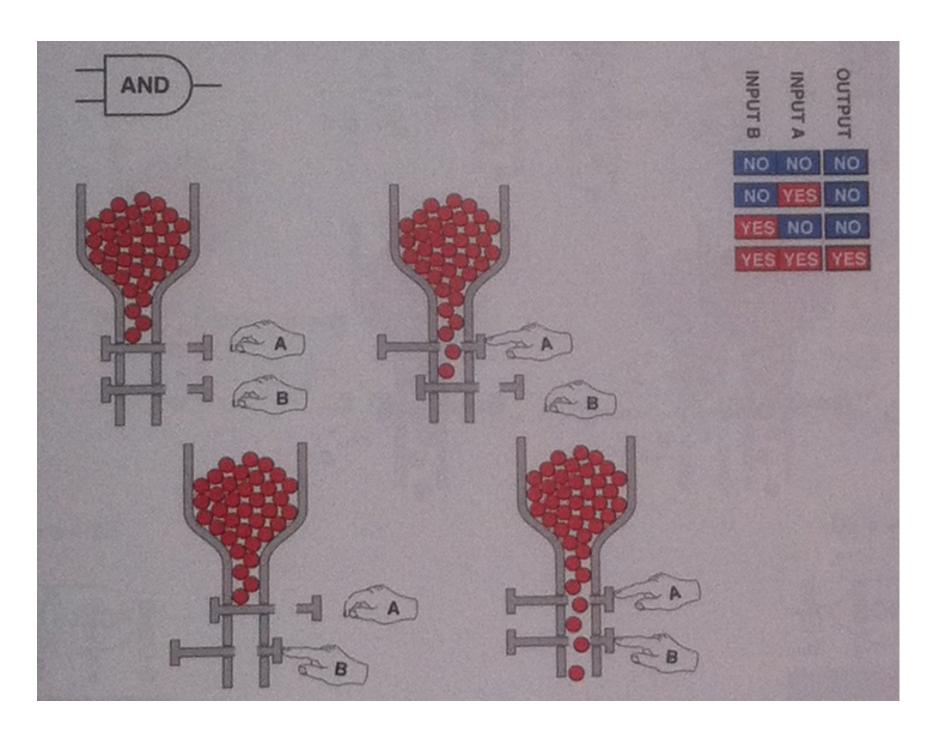


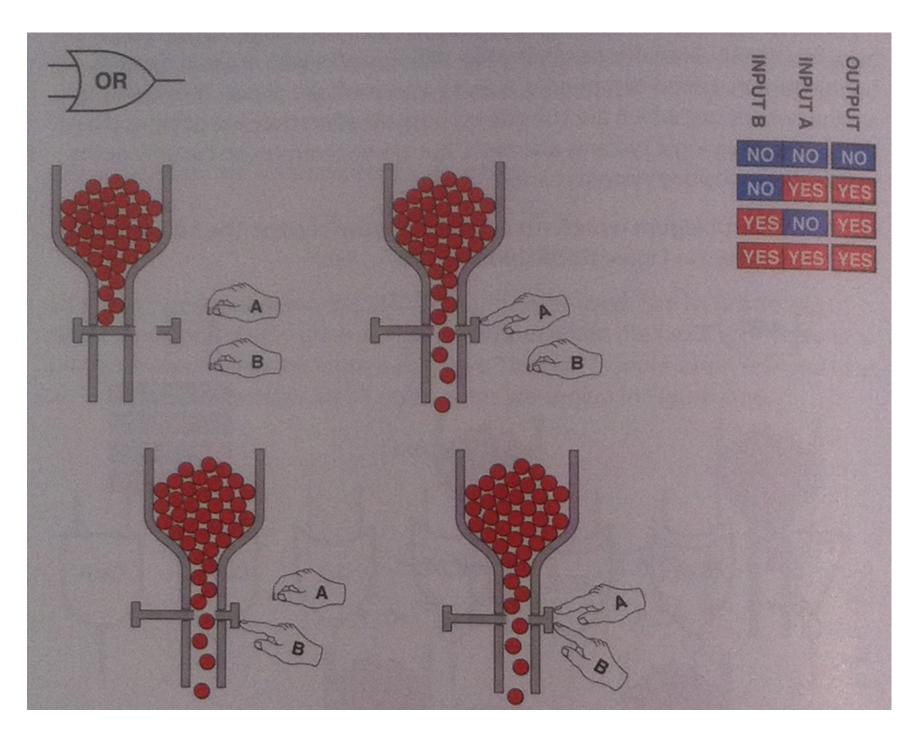
Truth Table

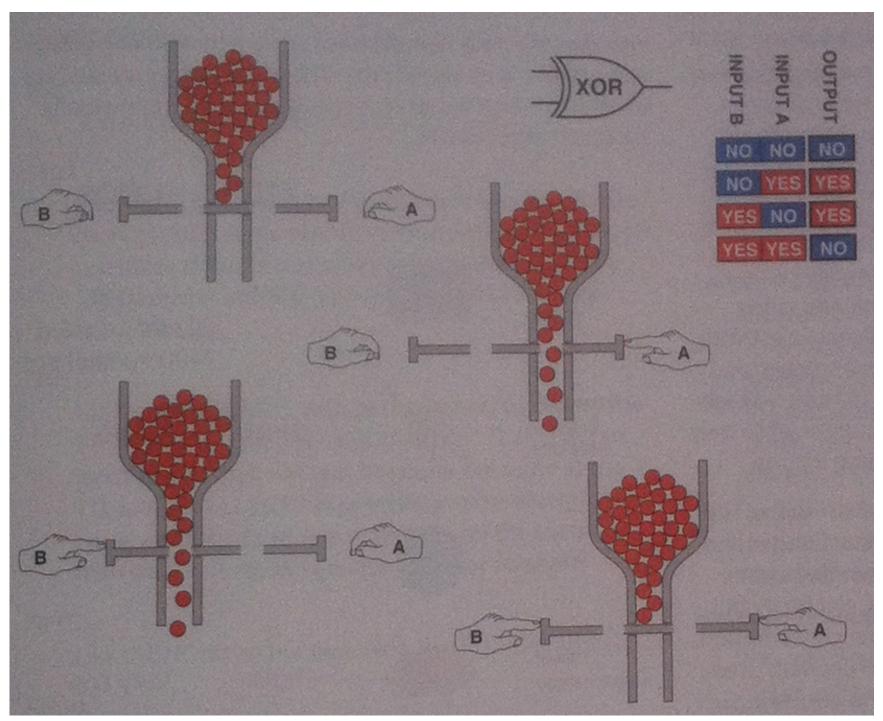
Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

The following examples came from this book

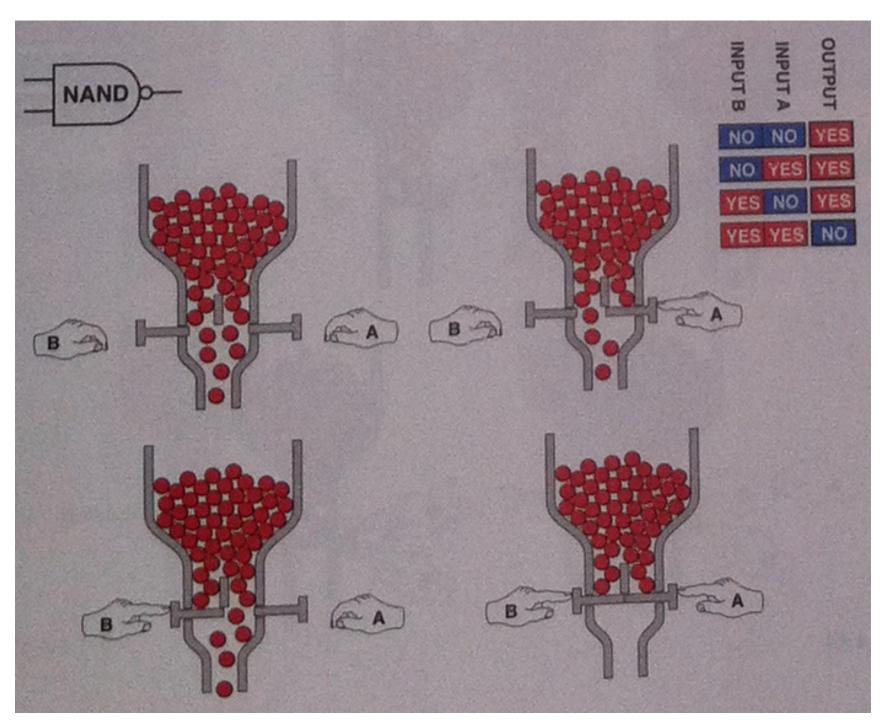


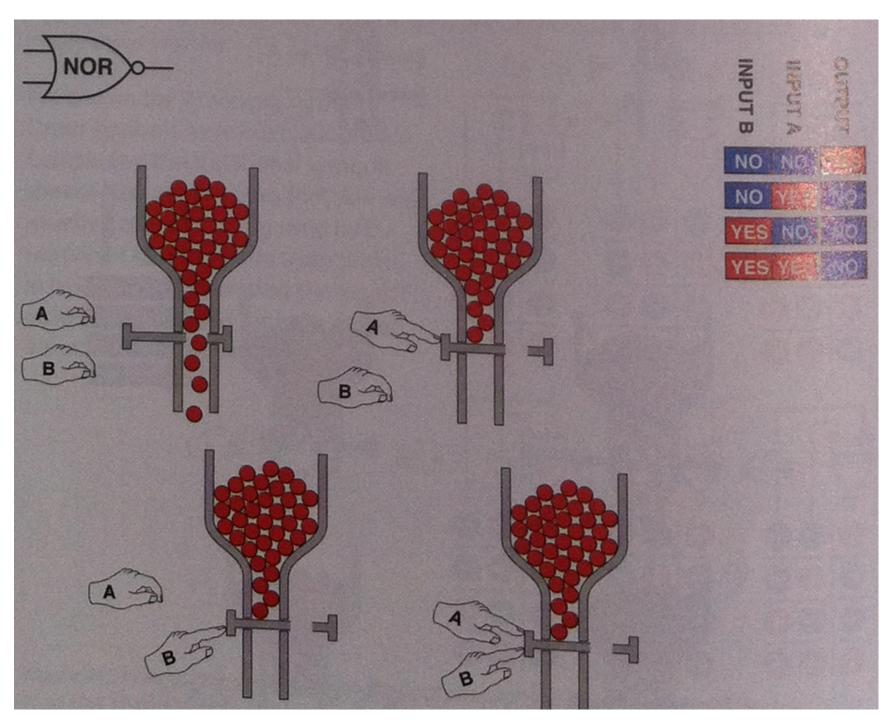


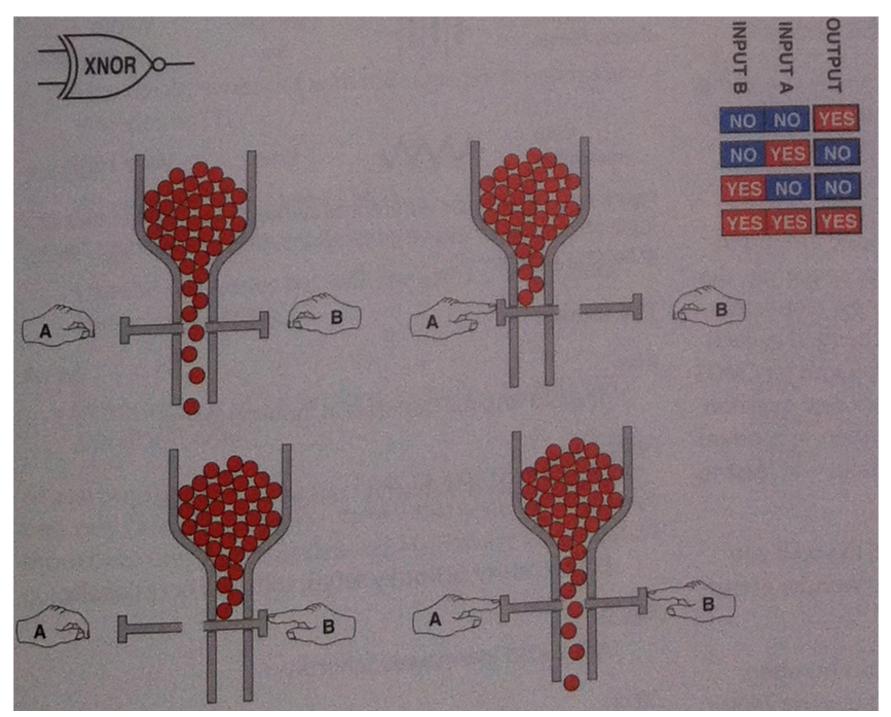




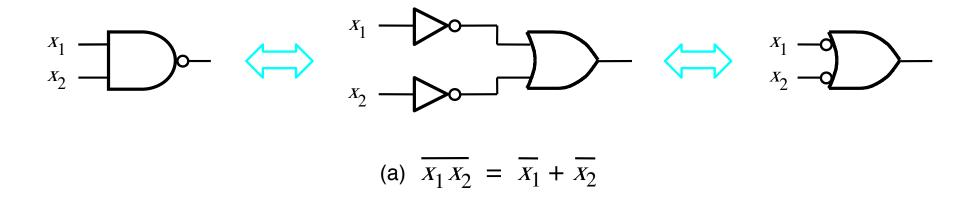
[Platt 2009]







DeMorgan's theorem in terms of logic gates

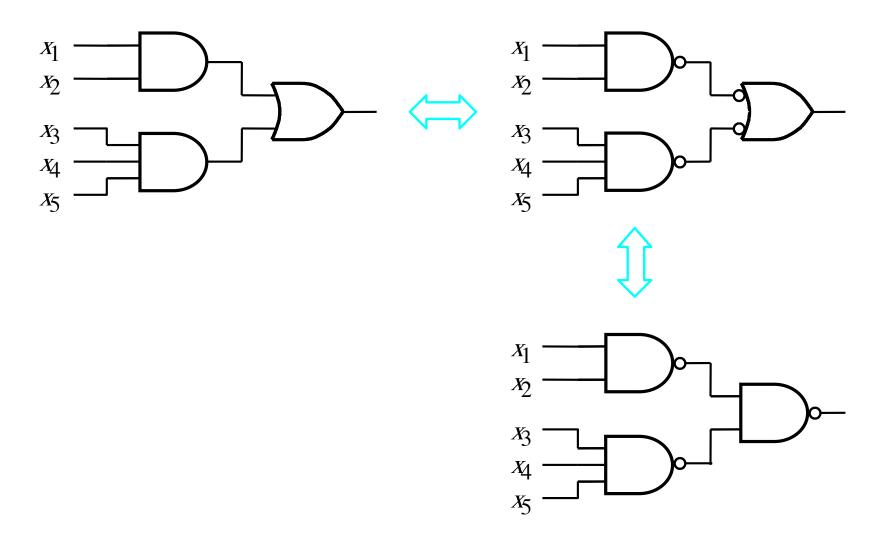


DeMorgan's theorem in terms of logic gates

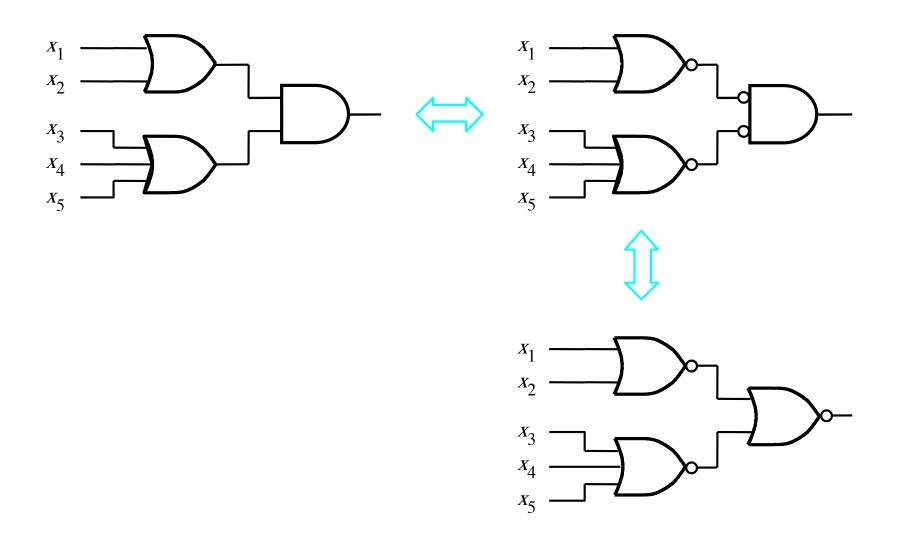
$$\begin{array}{c} x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_2 \end{array} \longrightarrow$$

Function Synthesis

Using NAND gates to implement a sum-of-products



Using NOR gates to implement a product-of sums



Example 2.13

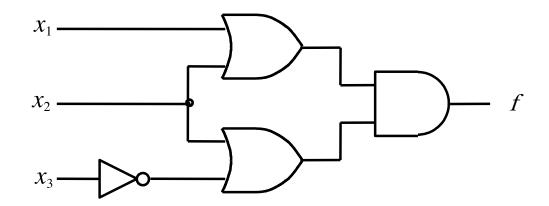
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NOR gates.

Example 2.13

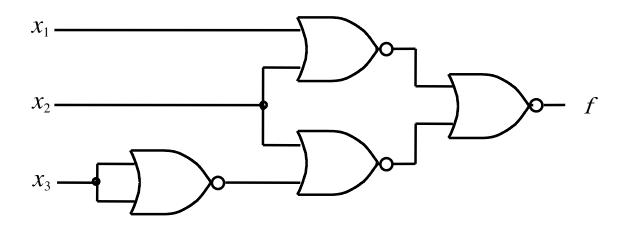
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NOR gates.

The POS expression is: $f = (x_1 + x_2)(x_2 + \overline{x_3})$

NOR-gate realization of the function



(a) POS implementation



(b) NOR implementation

Example 2.14

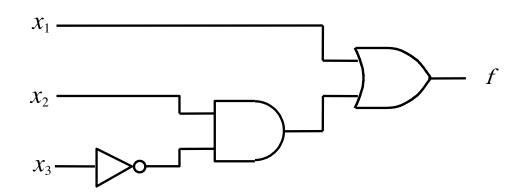
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NAND gates.

Example 2.14

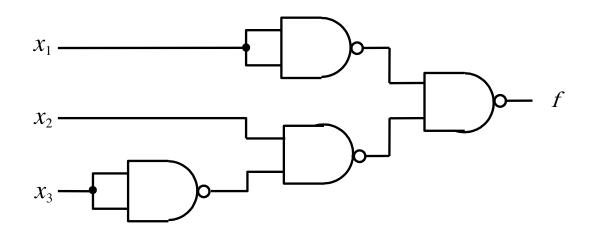
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NAND gates.

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$

NAND-gate realization of the function



(a) SOP implementation



(b) NAND implementation

Questions?

THE END