

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 10 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please
- Staple your pages

Quick Review

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

You can build any circuit using only these three gates
[Figure 2.8 from the textbook]

(a) Dual-inline package

Figure B.21. A 7400-series chip.

Figure B.22. An implementation of $f=x_{1} x_{2}+\bar{x}_{2} x_{3}$.

NAND Gate

NOR Gate

Why do we need two more gates?

They can be implemented with fewer transistors.
(more about this later)

Building a NOT Gate with NAND

Thus, the two truth tables are equal!

Building an AND gate with NAND gates

Desired AND Gate
NAND Construction

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR gate with NAND gates

Implications

Any Boolean function can be implemented with only NAND gates!

Implications

Any Boolean function can be implemented
with only NAND gates!

The same is also true for NOR gates!

NAND-NAND Implementation of Sum-of-Products Expressions

Sum-Of-Products

This circuit uses ANDs \& OR
[Figure 2.27 from the textbook]

This circuit uses only NANDs

NAND followed by NOT = AND

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

DeMorgan's Theorem

 15a. $\overline{x \cdot y}=\bar{x}+\bar{y}$
DeMorgan's Theorem

15a.

 $\overline{\mathbf{x} \cdot \mathbf{y}}=\overline{\mathbf{x}}+\overline{\mathbf{y}}$

Sum-Of-Products

This circuit uses only NANDs

Sum-Of-Products

This circuit uses only NANDs

NOR-NOR Implementation of Product-of-Sums Expressions

Product-Of-Sums

This circuit uses ORs \& AND

This circuit uses only NORs
[Figure 2.28 from the textbook]

NOR followed by NOT = OR

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

DeMorgan's Theorem

15b. $\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

DeMorgan's Theorem

15b.

$\overline{\mathbf{x}+\mathbf{y}}=\overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$

Product-Of-Sums

This circuit uses only NORs

Product-Of-Sums

This circuit uses only NORs

Another Synthesis Example

Truth table for a three-way light control

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

[Figure 2.22 from the textbook]

Let's Derive the SOP form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Let's Derive the SOP form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
f & =m_{1}+m_{2}+m_{4}+m_{7} \\
& =\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}
\end{aligned}
$$

Sum-of-products realization

[Figure 2.32a from the textbook]

Let's Derive the POS form

[Figure 2.31 from the textbook]

Let's Derive the POS form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
f & =M_{0} \cdot M_{3} \cdot M_{5} \cdot M_{6} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+x_{3}\right)
\end{aligned}
$$

Product-of-sums realization

[Figure 2.32b from the textbook]

Multiplexers

2-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $\mathbf{s}=\mathbf{0}$, then the output is equal to \mathbf{x}_{1}
- If $s=1$, then the output is equal to \mathbf{x}_{2}

Graphical Symbol for a 2-1 Multiplexer

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.
http://en.wikipedia.org/wiki/Railroad_switch]

Truth Table for a 2-1 Multiplexer

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

[Figure 2.33a from the textbook]

Let's Derive the SOP form

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Let's Derive the SOP form

Let's Derive the SOP form

Where should we put the negation signs?

$$
\begin{aligned}
& s x_{1} x_{2} \\
& s x_{1} x_{2}
\end{aligned}
$$

$$
s x_{1} x_{2}
$$

$$
s x_{1} x_{2}
$$

Let's Derive the SOP form

Let's Derive the SOP form

$f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[Figure 2.33b-c from the textbook]

More Compact Truth-Table Representation

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(a)Truth table

4-1 Multiplexer (Definition)

- Has four inputs: $\mathbf{w}_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and $\mathbf{s}_{\mathbf{0}}$
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

4-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: s_{1} and \mathbf{s}_{0}
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

We'll talk more about this when we get to chapter 4 , but here is a quick preview.

Graphical Symbol and Truth Table

(a) Graphic symbol
(b) Truth table
[Figure 4.2a-b from the textbook]

The long-form truth table

The long-form truth table

The long-form truth table

The long-form truth table

$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	F	$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}$	I		F	$\mathrm{S}_{1} \mathrm{~S}_{0}$			${ }_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}$		F	$\mathrm{S}_{1} \mathrm{~S}_{0}$			$\mathrm{I}_{2} \mathrm{I}_{1}$		F
00	00000	0	01	00	0	0	0				00		0	11			00		0
	$\begin{array}{llllll}0 & 0 & 0 & 1\end{array}$	1		00	0	1	0				00		0				00		0
	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	0		0 0	1	0	1				01		0				01		0
	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	1		00	1	1	1				01		0				01		0
	0100	0		$\begin{array}{llll}0 & 1\end{array}$	0	0	0				10		1				10		0
	$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	1		$\begin{array}{lll}0 & 1 & 0\end{array}$	0	1	0				10		1				10		0
	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	0		01	1	0	1				110		1				11		0
	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1		01	1	1	1				11		1				11		0
	1000	0		10	0	0	0				00		0				00		1
	10001	1		10	0	1	0				00		0				00		1
	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	0		$1 \begin{array}{ll}1 & 0\end{array}$	1	0	1				01		0				0		1
	$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	1		$1 \begin{array}{lll}1 & 0\end{array}$	1	1	1				01		0				01		1
	1100	0		11	0	0	0				10		1				10		1
	1101	1		110	0	1	0				10		1				10		1
	11110	0		$1 \begin{array}{ll}1 & 1\end{array}$	1	0	1				11		1				11		1
	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	1		$1 \begin{array}{ll}1 & 1\end{array}$			1				11		1				11		

The long-form truth table

$\mathrm{S}_{1} \mathrm{~S}_{0}$			I_{2}	I 1		F		S_{0}		13	2 I	I		F		S_{0}			I_{2}			F		S_{0}			I_{2}	I_{1}			F
00		0	0	0	0	0	0	1		0	0	0		0				0	0			0		1	0		0	0			0
			0	0	1	1				0	0	1		0					0	1		0			0		0	0	1		0
		0	0	1	0	0				0	-	0		1					0	0		0			0		0	1	0		0
		0	0	1	1	1				0	0	11		1					0			0			0		0	1	1		0
		0	1	0	0	0				0	1	0		0					1	-		1			0		1	0	0		0
		0	1	0	1	1				0	1	1		0				0	1	-		1			0		1	0	1		0
		0	1	1	0	0				0	1	10		1					1			1			0		1	1	0		0
		0	1	1	1	1				0	1	11		1				0	1	-		1			0		1	1	1		0
		1	0	0	0	0				10	0	0		0					0			0			1		0	0	0		1
		1	0	0	1	1				1	0	1		0				1	0	-		0			1		0	0	,		1
			0	1	0	0				10	0	10		1					0	-		0			1		0	1	0		
		1	0	1	1	1				1	0	11		1				1	0			0			1		0	1	1		1
		1	1	0	0	0				1	1	0		0				1	1	,		1			1		1	0	0		1
			1	0		1				1	1	1		0					1	,		1			1		1	0	1		1
		1	1	1		0				1	1	10		1					1			1			1		1	1	0		1
			1	1		1												1	1						1						

4-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

$\mathbf{S}_{\mathbf{0}}$
these two switches are controlled together

http://en.wikipedia.org/wiki/Railroad_switch]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

That is different from the SOP form of the 4-1 multiplexer shown below, which uses fewer gates

16-1 Multiplexer

[Figure 4.4 from the textbook]

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END

