

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Intro to Verilog

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is due on Monday Sep 10 @ 4p

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 17 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, please
- Staple your pages

Administrative Stuff

- Midterm Exam \#1
- When: Friday Sep 21.
- Where: This classroom
- What: Chapter 1 and Chapter 2 plus number systems
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).
- More details to follow.

Quick Review

2-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $\mathbf{s}=\mathbf{0}$, then the output is equal to \mathbf{x}_{1}
- If $s=1$, then the output is equal to \mathbf{x}_{2}

Graphical Symbol for a 2-1 Multiplexer

Let's Derive the SOP form

$f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[Figure 2.33b-c from the textbook]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch

This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.
http://en.wikipedia.org/wiki/Railroad_switch]

More Compact Truth-Table Representation

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(a)Truth table

4-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: s_{1} and \mathbf{s}_{0}
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

We'll talk more about this when we get to chapter 4 , but here is a quick preview.

Graphical Symbol and Truth Table

(a) Graphic symbol
(b) Truth table
[Figure 4.2a-b from the textbook]

The long-form truth table

4-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

$\mathbf{S}_{\mathbf{0}}$
these two switches are controlled together

http://en.wikipedia.org/wiki/Railroad_switch]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

That is different from the SOP form of the 4-1 multiplexer shown below, which uses fewer gates

16-1 Multiplexer

[Figure 4.4 from the textbook]

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

7-Segment Display Example

Display of numbers

(a) Logic circuit and 7-segment display

s_{1}	s_{0}	a	b	c	d	e	f	g
	0	0	1	1	1	1	1	1
0								
1	0	1	0	1	1	0	0	0
0	1	0	1	1	0	1	1	0

(b) Truth table
[Figure 2.34 from the textbook]

Display of numbers

s_{1}	s_{0}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	0	1	1	0	0	0	0
0	0	1	1	0	1	1	0	1

Display of numbers

s_{1}	s_{0}	a	b	c	d	e	f	g
0	0	1	1	1	1	1	1	0
0	1	0	1	1	0	0	0	0
1	0	1	1	0	1	1	0	1

$$
\begin{gathered}
a=\overline{s_{0}} \quad c=\overline{s_{1}} \quad e=\overline{s_{0}} \quad g=s_{1} \overline{s_{0}} \\
b=1 \quad d=\overline{s_{0}} \quad f=\overline{s_{1}} \overline{s_{0}}
\end{gathered}
$$

Intro to Verilog

History

- Created in 1983/1984
- Verilog-95 (IEEE standard 1364-1995)
- Verilog 2001 (IEEE Standard 1364-2001)
- Verilog 2005 (IEEE Standard 1364-2005)
- SystemVerilog
- SystemVerilog 2009 (IEEE Standard 1800-2009).

HDL

- Hardware Description Language
- Verilog HDL
- VHDL

Verilog HDL != VHDL

- These are two different Languages!
- Verilog is closer to \mathbf{C}
- VHDL is closer to Ada

[Figure 2.35 from the textbook]

"Hello World" in Verilog

```
module main;
    initial
        begin
        $display("Hello world!");
        $finish;
    end
endmodule
```

[http://en.wikipedia.org/wiki/Verilog]

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

You can build any circuit using only these three gates
[Figure 2.8 from the textbook]

How to specify a NOT gate in Verilog

NOT gate

How to specify a NOT gate in Verilog

we'll use the letter y for the output

NOT gate

How to specify a NOT gate in Verilog

$$
\operatorname{not}(y, x)
$$

NOT gate

How to specify an AND gate in Verilog

and (f, x1, x2)

AND gate
Verilog code

How to specify an OR gate in Verilog

or (f, x1, x2)

OR gate
Verilog code

2-1 Multiplexer

[Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer


```
module example1 (x1, x2, s, f);
    input x1, x2, s;
    output f;
    not}(k,s)
    and (g, k, x1);
    and (h, s, x2);
    or (f, g, h);
endmodule
```


Verilog Code for a 2-1 Multiplexer

module example 3 ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{~s}, \mathrm{f}$); input $\mathrm{x} 1, \mathrm{x} 2, \mathrm{~s}$; output f;
$$
\operatorname{assign} \mathrm{f}=(\sim \mathrm{s} \& \mathrm{x} 1) \mid(\mathrm{s} \& \mathrm{x} 2)
$$
endmodule

Verilog Code for a 2-1 Multiplexer


```
// Behavioral specification
module example5 (x1, x2, s, f);
    input \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~s}\);
    output \(f\); I
    reg f;
    always @ (x1 or x2 or s)
        if \((s==0)\)
        \(\mathrm{f}=\mathrm{x} 1\);
        else
        \(\mathrm{f}=\mathrm{x} 2\);
```

endmodule

Verilog Code for a 2-1 Multiplexer

// Behavioral specification
module example5 (input $\mathrm{x} 1, \mathrm{x} 2$, s , output reg f);

$$
\begin{gathered}
\text { always @ }(x 1, x 2, s) \\
\text { if }(s==0) \\
f=x 1 ; \\
\text { else } \\
f=x 2 ;
\end{gathered}
$$

endmodule

Another Example

Let's Write the Code for This Circuit

[Figure 2.39 from the textbook]

Let's Write the Code for This Circuit


```
module example2 (x1, x2, x3, x4, f, g, h);
    input x1, x2, x3, x4;
    output f, g, h;
    and (z1, x1, x3);
    and (z2, x2, x4);
    or (g, z1, z2);
    or (z3, x1, ~x3);
    or (z4,~x2, x4);
    and (h, z3, z4);
    or (f, g, h);
endmodule
```


Let's Write the Code for This Circuit

module example4 (x1, x2, x3, $\mathrm{x} 4, \mathrm{f}, \mathrm{g}, \mathrm{h}$); input $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4$; output $\mathrm{f}, \mathrm{g}, \mathrm{h}$;
$\operatorname{assign} g=(x 1 \& x 3) \mid(x 2 \& x 4)$; assign $h=(x 1 \mid \sim x 3) \&(\sim x 2 \mid x 4)$; $\operatorname{assign} \mathrm{f}=\mathrm{g} \mid \mathrm{h}$;

endmodule

Yet Another Example

A logic circuit with two modules

Top-level module

[Figure 2.44 from the textbook]

The adder module

$$
\begin{array}{rrrrr}
a & 0 & 0 & 1 & 1 \\
+b & \frac{+0}{+b} & \frac{+1}{01} & \frac{+0}{01} & \frac{+1}{10}
\end{array}
$$

(a) Evaluation of $S=a+b$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

(b) Truth table

(c) Logic network
[Figure 2.12 from the textbook]

The adder module

// An adder module module adder (a, b, s1, s0); input a, b;
output s 1 , s0;
$\operatorname{assign} \mathrm{s} 1=\mathrm{a} \& \mathrm{~b}$; $\operatorname{assign} \mathrm{s} 0=\mathrm{a}^{\wedge} \mathrm{b}$;
endmodule

The display module

$$
\begin{array}{cc|ccccccc}
s_{1} & s_{0} & a & b & c & d & e & f & g \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
& & \\
& & \\
& & \\
& & & \\
\hline
\end{array}
$$

The display module

```
\(a=\overline{s_{0}}\)
\(b=1\)
\(c=\overline{S_{1}}\)
\(d=\overline{s_{0}}\)
\(e=\overline{s_{0}}\)
\(f=\overline{s_{l}} \overline{S_{0}}\)
\(g=s_{1} \overline{s_{0}}\)
```

// A module for driving a 7-segment display module display (s1, s0, a, b, c, d, e, f, g); input $\mathrm{s} 1, \mathrm{~s} 0$; output a, b, c, d, e, f, g;
$\operatorname{assign} \mathrm{a}=\sim \mathrm{s} 0 ;$
assign $\mathrm{b}=1$;
$\boldsymbol{\operatorname { a s s i g n }} \mathrm{c}=\sim_{\mathrm{s}}$;
$\boldsymbol{a s s i g n} \mathrm{d}=\sim \mathrm{s} 0$;
assign $\mathrm{e}=\sim \mathrm{s} 0$;
$\operatorname{assign} \mathrm{f}=\sim \mathrm{s} 1 \& \sim \mathrm{~s} 0$;
assign $\mathrm{g}=\mathrm{s} 1 \& \sim \mathrm{~s} 0 ;$
endmodule

Putting it all together

Top-level module

// An adder module
module adder (a, b, s1, s0)

> input a, b;
output $\mathrm{s} 1, \mathrm{~s} 0$;
$\operatorname{assign} \mathrm{s} 1=\mathrm{a} \& \mathrm{~b}$;
$\operatorname{assign} \mathrm{s} 0=\mathrm{a}^{\wedge} \mathrm{b}$;
endmodule
// A module for driving a 7 -segment display
module display ($\mathrm{s} 1, \mathrm{~s} 0, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$);
input s 1 , s 0 ;
output a, b, c, d, e, f, g;
assign $\mathrm{a}=\sim \mathrm{s} 0 ;$
assign $b=1$;
$\operatorname{assign} \mathrm{c}=\sim_{\mathrm{s}} 1$;
$\operatorname{assign} \mathrm{d}=\sim \mathrm{s} 0$;
assign $\mathrm{e}=\sim \mathrm{s} 0$;
assign $\mathrm{f}=\sim \mathrm{s} 1 \& \sim \mathrm{~s} 0$;
assign $\mathrm{g}=\mathrm{s} 1 \& \sim \mathrm{~s} 0$;
endmodule
module adder_display (x, y, a, b, c, d, e, f, g); input x, y;
output a, b, c, d, e, f, g;
wire w 1 , w 0 ;
adder U1 (x, y, w1, w0);
display U2 (w1, w0, a, b, c, d, e, f, g);
endmodule

Questions?

THE END

