

## CprE 281: Digital Logic

## Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

# Examples of Solved Problems 

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

## Administrative Stuff

- HW5 is out
- It is due on Monday Oct 1 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Also, staple all of your pages together


## Administrative Stuff

- No homework is due next week.


## Administrative Stuff

- Midterm Exam \#1
- When: Friday Sep 21.
- Where: This classroom
- What: Chapter 1 and Chapter 2 plus number systems
- The exam will be open book and open notes (you can bring up to 3 pages of handwritten notes).


## Topics for the Midterm Exam

- Binary Numbers
- Octal Numbers
- Hexadecimal Numbers
- Conversion between the different number systems
- Truth Tables
- Boolean Algebra
- Logic Gates
- Circuit Synthesis with AND, OR, NOT
- Circuit Synthesis with NAND, NOR
- Converting an AND/OR/NOT circuit to NAND circuit
- Converting an AND/OR/NOT circuit to NOR circuit
- SOP and POS expressions


## Topics for the Midterm Exam

- Mapping a Circuit to Verilog code
- Mapping Verilog code to a circuit
- Multiplexers
- Venn Diagrams
- K-maps for 2, 3, and 4 variables
- Minimization of Boolean expressions using theorems
- Minimization of Boolean expressions with K-maps
- Incompletely specified functions (with don't cares)
- Functions with multiple outputs


## Example 1

## Determine if the following equation is valid

$$
\bar{x}_{1} \bar{x}_{3}+x_{2} x_{3}+x_{1} \bar{x}_{2}=\bar{x}_{1} x_{2}+x_{1} x_{3}+\bar{x}_{2} \bar{x}_{3}
$$

$$
\bar{x}_{1} \bar{x}_{3}+x_{2} x_{3}+x_{1} \bar{x}_{2} \stackrel{?}{=} \bar{x}_{1} x_{2}+x_{1} x_{3}+\bar{x}_{2} \bar{x}_{3}
$$



## LHS

RHS

## Left-Hand Side (LHS)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\bar{x}_{1} \overline{x_{3}}$ | $x_{2} x_{3}$ | $x_{1} \overline{x_{2}}$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |
| 2 | 0 | 1 | 0 |  |  |  |  |
| 3 | 0 | 1 | 1 |  |  |  |  |
| 4 | 1 | 0 | 0 |  |  |  |  |
| 5 | 1 | 0 | 1 |  |  |  |  |
| 6 | 1 | 1 | 0 |  |  |  |  |
| 7 | 1 | 1 | 1 |  |  |  |  |

## Left-Hand Side (LHS)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\overline{x_{1}} \overline{x_{3}}$ | $x_{2} x_{3}$ | $x_{1} \overline{x_{2}}$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 |  |
| 3 | 0 | 1 | 1 | 0 | 1 | 0 |  |
| 4 | 1 | 0 | 0 | 0 | 0 | 1 |  |
| 5 | 1 | 0 | 1 | 0 | 0 | 1 |  |
| 6 | 1 | 1 | 0 | 0 | 0 | 0 |  |
| 7 | 1 | 1 | 1 | 0 | 1 | 0 |  |

## Left-Hand Side (LHS)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\overline{x_{1}} \overline{x_{3}}$ | $x_{2} x_{3}$ | $x_{1} \overline{x_{2}}$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 3 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 4 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 5 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 6 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 7 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |

## Right-Hand Side (RHS)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\bar{x}_{1} x_{2}$ | $x_{1} x_{3}$ | $\overline{x_{2}} \overline{x_{3}}$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |  |  |  |  |
| 1 | 0 | 0 | 1 |  |  |  |  |
| 2 | 0 | 1 | 0 |  |  |  |  |
| 3 | 0 | 1 | 1 |  |  |  |  |
| 4 | 1 | 0 | 0 |  |  |  |  |
| 5 | 1 | 0 | 1 |  |  |  |  |
| 6 | 1 | 1 | 0 |  |  |  |  |
| 7 | 1 | 1 | 1 |  |  |  |  |

## Right-Hand Side (RHS)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\bar{x}_{1} x_{2}$ | $x_{1} x_{3}$ | $\overline{x_{2}} \overline{x_{3}}$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 |  |
| 3 | 0 | 1 | 1 | 1 | 0 | 0 |  |
| 4 | 1 | 0 | 0 | 0 | 0 | 1 |  |
| 5 | 1 | 0 | 1 | 0 | 1 | 0 |  |
| 6 | 1 | 1 | 0 | 0 | 0 | 0 |  |
| 7 | 1 | 1 | 1 | 0 | 1 | 0 |  |

## Right-Hand Side (RHS)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | $\overline{x_{1} x_{2}}$ | $x_{1} x_{3}$ | $\overline{x_{2}} \overline{x_{3}}$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 3 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 5 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 6 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 7 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |




1
1
0

They are equal.

## Example 2

Design the minimum-cost product-of-sums expression for the function

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(0,2,4,5,6,7)
$$

## Minterms and Maxterms (with three variables)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | Minterm | Maxterm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ | $M_{0}=x_{1}+x_{2}+x_{3}$ |
| 1 | 0 | 0 | 1 | $m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$ | $M_{1}=x_{1}+x_{2}+\bar{x}_{3}$ |
| 2 | 0 | 1 | 0 | $m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$ | $M_{2}=x_{1}+\bar{x}_{2}+x_{3}$ |
| 3 | 0 | 1 | 1 | $m_{3}=\bar{x}_{1} x_{2} x_{3}$ | $M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$ |
| 4 | 1 | 0 | 0 | $m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$ | $M_{4}=\bar{x}_{1}+x_{2}+x_{3}$ |
| 5 | 1 | 0 | 1 | $m_{5}=x_{1} \bar{x}_{2} x_{3}$ | $M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$ |
| 6 | 1 | 1 | 0 | $m_{6}=x_{1} x_{2} \bar{x}_{3}$ | $M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$ |
| 7 | 1 | 1 | 1 | $m_{7}=x_{1} x_{2} x_{3}$ | $M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$ |

[ Figure 2.22 from the textbook]

## Minterms and Maxterms (with three variables)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | Minterm | Maxterm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ | $M_{0}=x_{1}+x_{2}+x_{3}$ |
| 1 | 0 | 0 | 1 | $m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$ | $M_{1}=x_{1}+x_{2}+\bar{x}_{3}$ |
| 2 | 0 | 1 | 0 | $m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$ | $M_{2}=x_{1}+\bar{x}_{2}+x_{3}$ |
| 3 | 0 | 1 | 1 | $m_{3}=\bar{x}_{1} x_{2} x_{3}$ | $M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$ |
| 4 | 1 | 0 | 0 | $m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$ | $M_{4}=\bar{x}_{1}+x_{2}+x_{3}$ |
| 5 | 1 | 0 | 1 | $m_{5}=x_{1} \bar{x}_{2} x_{3}$ | $M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$ |
| 6 | 1 | 1 | 0 | $m_{6}=x_{1} x_{2} \bar{x}_{3}$ | $M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$ |
| 7 | 1 | 1 | 1 | $m_{7}=x_{1} x_{2} x_{3}$ | $M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$ |

The function is
1 for these rows

## Minterms and Maxterms (with three variables)

| Row <br> number | $x_{1}$ | $x_{2}$ | $x_{3}$ | Minterm | Maxterm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ | $M_{0}=x_{1}+x_{2}+x_{3}$ |
| 1 | 0 | 0 | 1 | $m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$ | $M_{1}=x_{1}+x_{2}+\bar{x}_{3}$ |
| 2 | 0 | 1 | 0 | $m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$ | $M_{2}=x_{1}+\bar{x}_{2}+x_{3}$ |
| 3 | 0 | 1 | 1 | $m_{3}=\bar{x}_{1} x_{2} x_{3}$ | $M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$ |
| 4 | 1 | 0 | 0 | $m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$ | $M_{4}=\bar{x}_{1}+x_{2}+x_{3}$ |
| 5 | 1 | 0 | 1 | $m_{5}=x_{1} \bar{x}_{2} x_{3}$ | $M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$ |
| 6 | 1 | 1 | 0 | $m_{6}=x_{1} x_{2} \bar{x}_{3}$ | $M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$ |
| 7 | 1 | 1 | 1 | $m_{7}=x_{1} x_{2} x_{3}$ | $M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$ |

The function is
1 for these rows

The function is
0 for these rows

# Two different ways to specify the same function $f$ of three variables 

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(0,2,4,5,6,7)
$$

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Pi \mathrm{M}(1,3)
$$

## The POS Expression

$$
M_{1}=x_{1}+x_{2}+\bar{x}_{3} \quad M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}
$$

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) & =\Pi \mathrm{M}(1,3) \\
& =\mathrm{M}_{1} \bullet \mathrm{M}_{3} \\
& =\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\overline{\mathrm{x}}_{3}\right) \cdot\left(\mathrm{x}_{1}+\overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{3}\right)
\end{aligned}
$$

## The Minimum POS Expression

$$
\begin{aligned}
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) & =\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\overline{\mathrm{x}}_{3}\right) \cdot\left(\mathrm{x}_{1}+\overline{\mathrm{x}}_{2}+\overline{\mathrm{x}}_{3}\right) \\
& =\left(\mathrm{x}_{1}+\overline{\mathrm{x}}_{3}+\mathrm{x}_{2}\right) \cdot\left(\mathrm{x}_{1}+\overline{\mathrm{x}}_{3}+\overline{\mathrm{x}}_{2}\right) \\
& =\left(\mathrm{x}_{1}+\overline{\mathrm{x}}_{3}\right)
\end{aligned}
$$

Hint: Use the following Boolean Algebra theorem

$$
\text { 14b. }(x+y) \cdot(x+\bar{y})=x
$$

## Alternative Solution Using K-Maps

| $x_{1}$ | $x_{2}$ | $x_{3}$ |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $m_{0}$ |
| 0 | 0 | 1 | $m_{1}$ |
| 0 | 1 | 0 | $m_{2}$ |
| 0 | 1 | 1 | $m_{3}$ |
| 1 | 0 | 0 | $m_{4}$ |
| 1 | 0 | 1 | $m_{5}$ |
| 1 | 1 | 0 | $m_{6}$ |
| 1 | 1 | 1 | $m_{7}$ |


(b) Karnaugh map
(a) Truth table

## Alternative Solution Using K-Maps

| $x_{1}$ | $x_{2}$ | $x_{3}$ |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $m_{0}$ |
| 0 | 0 | 1 | $m_{1}$ |
| 0 | 1 | 0 | $m_{2}$ |
| 0 | 1 | 1 | $m_{3}$ |
| 1 | 0 | 0 | $m_{4}$ |
| 1 | 0 | 1 | $m_{5}$ |
| 1 | 1 | 0 | $m_{6}$ |
| 1 | 1 | 1 | $m_{7}$ |


(b) Karnaugh map
(a) Truth table

## Alternative Solution Using K-Maps

| $x_{1}$ | $x_{2}$ | $x_{3}$ |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $m_{0}$ |
| 0 | 0 | 1 | $m_{1}$ |
| 0 | 1 | 0 | $m_{2}$ |
| 0 | 1 | 1 | $m_{3}$ |
| 1 | 0 | 0 | $m_{4}$ |
| 1 | 0 | 1 | $m_{5}$ |
| 1 | 1 | 0 | $m_{6}$ |
| 1 | 1 | 1 | $m_{7}$ |


(b) Karnaugh map
(a) Truth table

## Alternative Solution Using K-Maps



## Alternative Solution Using K-Maps



## Alternative Solution Using K-Maps



## Example 3

Problem: A circuit that controls a given digital system has three inputs: $x_{1}, x_{2}$, and $x_{3}$. It has to recognize three different conditions:

- Condition $A$ is true if $x_{3}$ is true and either $x_{1}$ is true or $x_{2}$ is false
- Condition $B$ is true if $x_{1}$ is true and either $x_{2}$ or $x_{3}$ is false
- Condition $C$ is true if $x_{2}$ is true and either $x_{1}$ is true or $x_{3}$ is false

The control circuit must produce an output of 1 if at least two of the conditions $A, B$, and $C$ are true. Design the simplest circuit that can be used for this purpose.

## Condition A

Condition $A$ is true if $x_{3}$ is true and either $x_{1}$ is true or $x_{2}$ is false

## Condition A

Condition $A$ is true if $x_{3}$ is true and either $x_{1}$ is true or $x_{2}$ is false

$$
A=x_{3}\left(x_{1}+\bar{x}_{2}\right)=x_{3} x_{1}+x_{3} \bar{x}_{2}
$$

## Condition B

Condition $B$ is true if $x_{1}$ is true and either $x_{2}$ or $x_{3}$ is false

## Condition B

Condition $B$ is true if $x_{1}$ is true and either $x_{2}$ or $x_{3}$ is false

$$
B=x_{1}\left(\bar{x}_{2}+\bar{x}_{3}\right)=x_{1} \bar{x}_{2}+x_{1} \bar{x}_{3}
$$

## Condition C

Condition $C$ is true if $x_{2}$ is true and either $x_{1}$ is true or $x_{3}$ is false

## Condition C

Condition $C$ is true if $x_{2}$ is true and either $x_{1}$ is true or $x_{3}$ is false

$$
C=x_{2}\left(x_{1}+\bar{x}_{3}\right)=x_{2} x_{1}+x_{2} \bar{x}_{3}
$$

## The output of the circuit can be expressed as $f=A B+A C+B C$

$$
\begin{aligned}
A B & =\left(x_{3} x_{1}+x_{3} \bar{x}_{2}\right)\left(x_{1} \bar{x}_{2}+x_{1} \bar{x}_{3}\right) \\
& =x_{3} x_{1} x_{1} \bar{x}_{2}+x_{3} x_{1} x_{1} \bar{x}_{3}+x_{3} \bar{x}_{2} x_{1} \bar{x}_{2}+x_{3} \bar{x}_{2} x_{1} \bar{x}_{3} \\
& =x_{3} x_{1} \bar{x}_{2}+0+x_{3} \bar{x}_{2} x_{1}+0 \\
& =x_{1} \bar{x}_{2} x_{3}
\end{aligned}
$$

The output of the circuit can be expressed as $f=A B+A C+B C$
$A C=\left(x_{3} x_{1}+x_{3} \bar{x}_{2}\right)\left(x_{2} x_{1}+x_{2} \bar{x}_{3}\right)$
$=x_{3} x_{1} x_{2} x_{1}+x_{3} x_{1} x_{2} \bar{x}_{3}+x_{3} \bar{x}_{2} x_{2} x_{1}+x_{3} \bar{x}_{2} x_{2} \bar{x}_{3}$
$=x_{3} x_{1} x_{2}+0+0+0$
$=x_{1} x_{2} x_{3}$

## The output of the circuit can be expressed as $f=A B+A C+B C$

$$
\begin{aligned}
B C & =\left(x_{1} \bar{x}_{2}+x_{1} \bar{x}_{3}\right)\left(x_{2} x_{1}+x_{2} \bar{x}_{3}\right) \\
& =x_{1} \bar{x}_{2} x_{2} x_{1}+x_{1} \bar{x}_{2} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{3} x_{2} x_{1}+x_{1} \bar{x}_{3} x_{2} \bar{x}_{3} \\
& =0+0+x_{1} \bar{x}_{3} x_{2}+x_{1} \bar{x}_{3} x_{2} \\
& =x_{1} x_{2} \bar{x}_{3}
\end{aligned}
$$

## Finally, we get

$$
\begin{aligned}
f & =x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} x_{3}+x_{1} x_{2} \bar{x}_{3} \\
& =x_{1}\left(\bar{x}_{2}+x_{2}\right) x_{3}+x_{1} x_{2}\left(x_{3}+\bar{x}_{3}\right) \\
& =x_{1} x_{3}+x_{1} x_{2} \\
& =x_{1}\left(x_{3}+x_{2}\right)
\end{aligned}
$$

## Example 4

Solve the previous problem using Venn diagrams.

## Venn Diagrams

(find the areas that are shaded at least two times)

(a) Function $A$ :
$x_{3} x_{1}+x_{3} \bar{x}_{2}$

(c) Function $C$
$x_{2} x_{1}+x_{2} \bar{x}_{3}$

(b) Function $B$

$$
x_{1} \bar{x}_{2}+x_{1} \bar{x}_{3}
$$


(d) Function $f$

[ Figure 2.66 from the textbook ]

## Example 5

## Design the minimum-cost SOP and POS

 expression for the function$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\Sigma \mathrm{m}(4,6,8,10,11,12,15)+\mathrm{D}(3,5,7,9)
$$

## Let's Use a K-Map

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\Sigma \mathrm{m}(4,6,8,10,11,12,15)+\mathrm{D}(3,5,7,9)
$$



## Let's Use a K-Map

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\Sigma \mathrm{m}(4,6,8,10,11,12,15)+\mathrm{D}(3,5,7,9)
$$



## The SOP Expression


[ Figure 2.67a from the textbook]

## What about the POS Expression?

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\Sigma \mathrm{m}(4,6,8,10,11,12,15)+\mathrm{D}(3,5,7,9)
$$



## The POS Expression


[ Figure 2.67b from the textbook]

## Example 6

## Use K-maps to find the minimum-cost SOP and POS expression for the function

$$
f\left(x_{1}, \ldots, x_{4}\right)=\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+x_{3} x_{4}+\bar{x}_{1} \bar{x}_{2} x_{4}+x_{1} x_{2} \bar{x}_{3} x_{4}
$$

assuming that there are also don't-cares defined as $D=\sum(9,12,14)$.

## Let's map the expression to the K-Map

$f\left(x_{1}, \ldots, x_{4}\right)=\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+x_{3} x_{4}+\bar{x}_{1} \bar{x}_{2} x_{4}+x_{1} x_{2} \bar{x}_{3} x_{4}$
$D=\sum(9,12,14)$.


## Let's map the expression to the K-Map

$f\left(x_{1}, \ldots, x_{4}\right)=\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+x_{3} x_{4}+\bar{x}_{1} \bar{x}_{2} x_{4}+x_{1} x_{2} \bar{x}_{3} x_{4}$
$D=\sum(9,12,14)$.


## Let's map the expression to the K-Map

$f\left(x_{1}, \ldots, x_{4}\right)=\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+x_{3} x_{4}+\bar{x}_{1} \bar{x}_{2} x_{4}+x_{1} x_{2} \bar{x}_{3} x_{4}$


## The SOP Expression

$$
f\left(x_{1}, \ldots, x_{4}\right)=\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+x_{3} x_{4}+\bar{x}_{1} \bar{x}_{2} x_{4}+x_{1} x_{2} \bar{x}_{3} x_{4}
$$


$f=x_{3} x_{4}+\bar{x}_{1} \bar{x}_{3} \bar{x}_{4}+\bar{x}_{2} x_{4}+x_{1} x_{4}$
[ Figure 2.68a from the textbook]

## What about the POS Expression?



## The POS Expression



$$
f=\left(\bar{x}_{3}+x_{4}\right)\left(\bar{x}_{1}+x_{4}\right)\left(x_{1}+\bar{x}_{2}+x_{3}+\bar{x}_{4}\right)
$$

[ Figure 2.68b from the textbook]

## Example 7

Derive the minimum-cost SOP expression for

$$
f=s_{3}\left(\bar{s}_{1}+\bar{s}_{2}\right)+s_{1} s_{2}
$$

# First, expand the expression using property 12a 

$$
\begin{aligned}
& f=s_{3}\left(\bar{s}_{1}+\bar{s}_{2}\right)+s_{1} s_{2} \\
& f=\bar{s}_{1} s_{3}+\bar{s}_{2} s_{3}+s_{1} s_{2}
\end{aligned}
$$

## Construct the K-Map for this expression

$$
f=\bar{s}_{1} s_{3}+\bar{s}_{2} s_{3}+s_{1} s_{2}
$$

| $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ |  |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | $m_{0}$ |
| 0 | 0 | 1 | $m_{1}$ |
| 0 | 1 | 0 | $m_{2}$ |
| 0 | 1 | 1 | $m_{3}$ |
| 1 | 0 | 0 | $m_{4}$ |
| 1 | 0 | 1 | $m_{5}$ |
| 1 | 1 | 0 | $m_{6}$ |
| 1 | 1 | 1 | $m_{7}$ |


(b) Karnaugh map
(a) Truth table

## Construct the K-Map for this expression

$$
f=\bar{s}_{1} s_{3}+\bar{s}_{2} s_{3}+s_{1} s_{2}
$$


[ Figure 2.69 from the textbook ]

## Construct the K-Map for this expression

$$
f=\bar{s}_{1} s_{3}+\bar{s}_{2} s_{3}+s_{1} s_{2}
$$



Simplified Expression: $f=\mathrm{s}_{3}+\mathrm{s}_{1} \mathrm{~s}_{2}$
[ Figure 2.69 from the textbook ]

## Example 8

Write the Verilog code for the following circuit ...

## Logic Circuit


[ Figure 2.70 from the textbook]

## Circuit for 2-1 Multiplexer


(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[ Figure 2.33b-c from the textbook ]

## Logic Circuit vs Verilog Code



```
module f_g (x, y, z, f, g);
    input \(\mathrm{x}, \mathrm{y}, \mathrm{z}\);
    output \(\mathrm{f}, \mathrm{g}\);
    wire k ;
    \(\operatorname{assign} \mathrm{k}=\mathrm{y}^{\wedge} \mathrm{z}\);
    assign \(g=\mathrm{k}^{\wedge} \mathrm{x}\);
    \(\operatorname{assign} \mathrm{f}=(\sim \mathrm{k} \& \mathrm{z}) \mid(\mathrm{k} \& \mathrm{x})\);
```

endmodule

## Example 9

Write the Verilog code for the following circuit ...

## The Logic Circuit for this Example

Top-level module

[ Figure 2.72 from the textbook]

## Circuit for 2-1 Multiplexer


(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[ Figure 2.33b-c from the textbook ]

## Addition of Binary Numbers



| $a$ | $b$ | $s_{1}$ | $s_{0}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

## Logic Circuit vs Verilog Code

Top-level module

module shared (a, b, c, d, m, sl, s0); input $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{m}$; output s 1 , s 0 ;
wire w 1 , w 2 ;
mux2tol U1 (a, c, m, wl); mux2tol U2 (b, d, m, w2); adder U3 (w1, w2, s1, s0); endmodule
module mux2to1 (x1, x2, s, f); input $\mathrm{x} 1, \mathrm{x} 2, \mathrm{~s}$; output f ; assign $\mathrm{f}=(\sim \mathrm{s} \& \mathrm{x} 1) \mid(\mathrm{s} \& \mathrm{x} 2)$;
endmodule
module adder ( $\mathrm{a}, \mathrm{b}, \mathrm{sl}, \mathrm{s} 0$ );
input $\mathrm{a}, \mathrm{b}$;
output s 1 , s0;
$\operatorname{assign} \mathrm{s} 1=\mathrm{a} \& \mathrm{~b}$;
$\operatorname{assign} \mathrm{s} 0=\mathrm{a}^{\wedge} \mathrm{b}$;
endmodule
[ Figure 2.73 from the textbook ]

## Some material form Appendix B

## Programmable Logic Array (PLA)


[ Figure B. 25 from textbook ]

## Gate-Level Diagram of a PLA



## Customary Schematic for PLA


[ Figure B. 27 from textbook ]

## Programmable Array Logic (PAL)


[ Figure B. 28 from textbook]

## Programmable Array Logic (PAL)



AND plane
Only the AND plane is programmable. The OR plane is fixed.

## Questions?

## THE END

