

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW5 is out
- It is due on Monday Oct 1 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, please
 - Staple your pages

Administrative Stuff

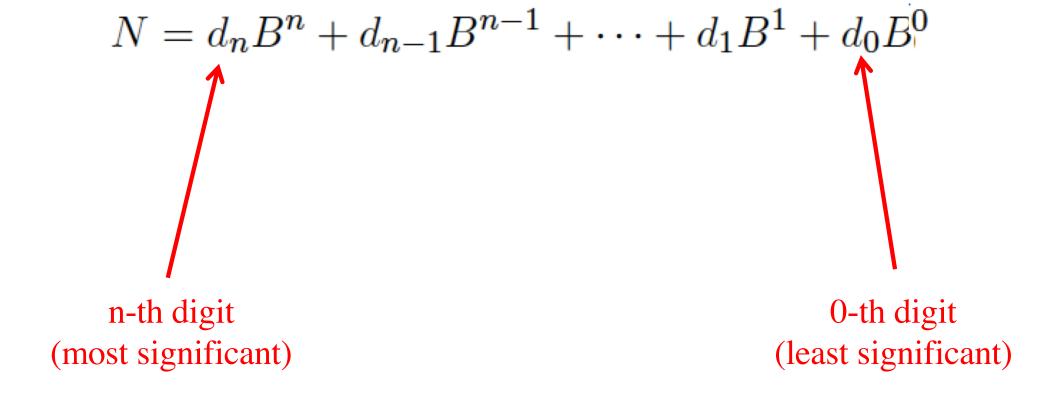
Labs next week

- Mini-Project
- This is worth 3% of your grade (x2 labs)
- http://www.ece.iastate.edu/~alexs/classes/ 2018_Fall_281/labs/Project-Mini/

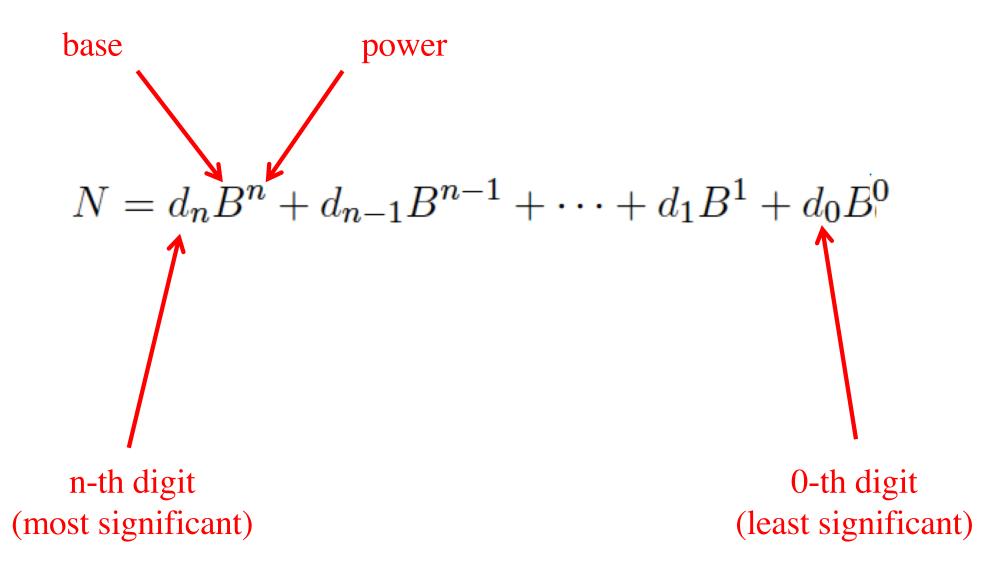
Number Systems

$$N = d_n B^n + d_{n-1} B^{n-1} + \dots + d_1 B^1 + d_0 B^0$$

Number Systems



Number Systems



The Decimal System

$$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

The Decimal System

$$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

$$= 5 \times 100 + 2 \times 10 + 4 \times 1$$

$$=500+20+4$$

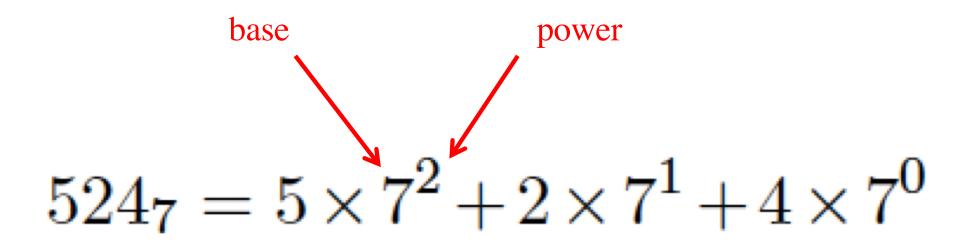
$$=524_{10}$$

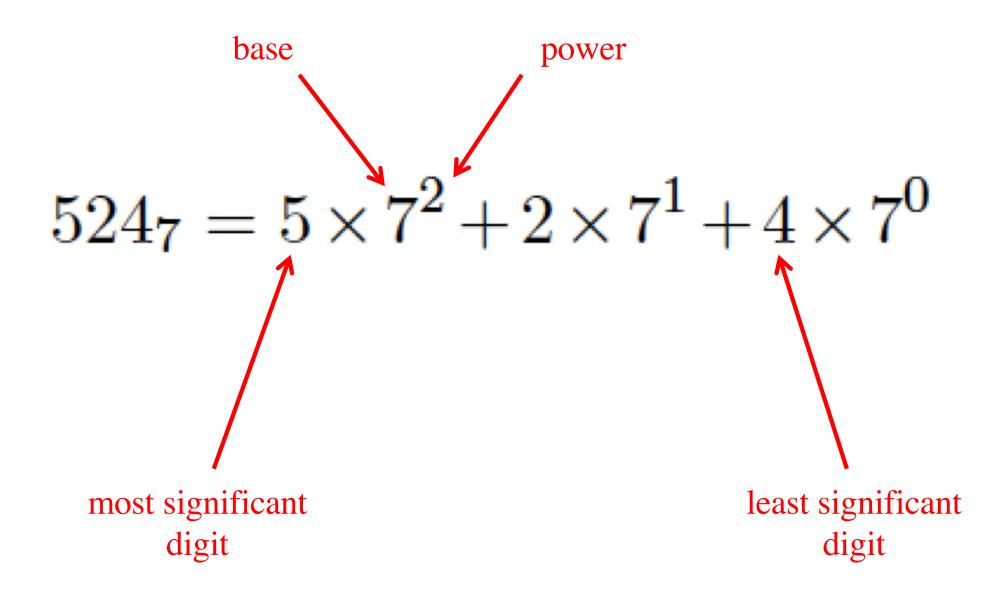
5 2 4



Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0.

$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$



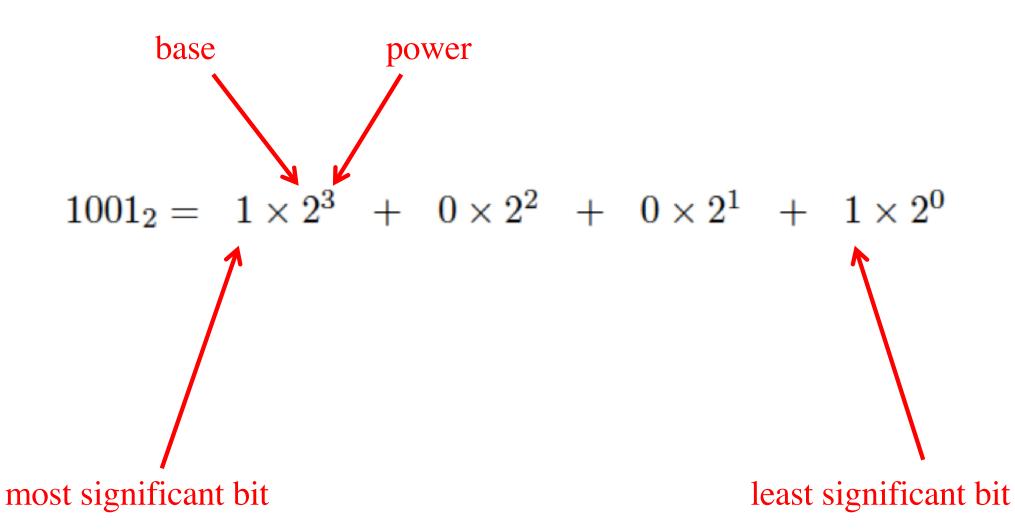


$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$
$$= 5 \times 49 + 2 \times 7 + 4 \times 1$$
$$= 245 + 14 + 4$$
$$= 263_{10}$$

Binary Numbers (Base 2)

$$1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Binary Numbers (Base 2)



Binary Numbers (Base 2)

Another Example

$$11101_{2} = 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 1 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 = 16 + 8 + 4 + 0 + 0 + 1 = 29_{10}$$

Powers of 2

$$2^{10} = 1024$$
 $2^9 = 512$
 $2^8 = 256$
 $2^7 = 128$
 $2^6 = 64$
 $2^5 = 32$
 $2^4 = 16$
 $2^3 = 8$
 $2^2 = 4$
 $2^1 = 2$
 $2^0 = 1$

What is the value of this binary number?

00101100

· 0 0 1 0 1 1 0 0

• $0*2^7 + 0*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0$

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

32+8+4=44 (in decimal)

							2^0
0	0	1	0	1	1	0	0

Binary numbers

Unsigned numbers

all bits represent the magnitude of a positive integer

Signed numbers

left-most bit represents the sign of a number

Decimal	Binary	Octal	Hexadecimal
00	00000	00	00
01	00001	01	01
02	00010	02	02
03	00011	03	03
04	00100	04	04
05	00101	05	05
06	00110	06	06
07	00111	07	07
08	01000	10	08
09	01001	11	09
10	01010	12	0A
11	01011	13	0B
12	01100	14	0C
13	01101	15	0D
14	01110	16	$0\mathrm{E}$
15	01111	17	0F
16	10000	20	10
17	10001	21	11
18	10010	22	12

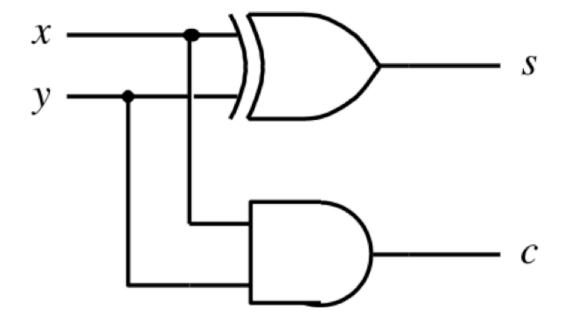
Table 3.1. Numbers in different systems.

Adding two bits (there are four possible cases)

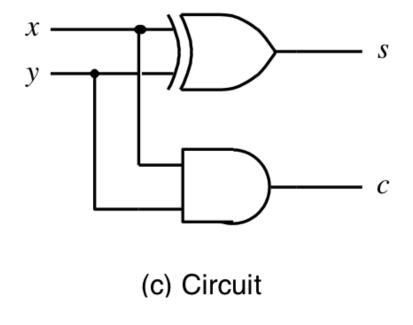
Adding two bits (the truth table)

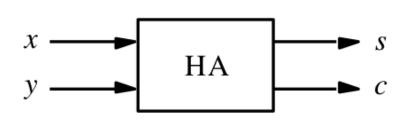
x y	Carry c	Sum s
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Adding two bits (the logic circuit)



The Half-Adder





(d) Graphical symbol

Addition of multibit numbers

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ... x_i ... y_i ... y_i ... x_i ...

Bit position *i*

carry	0	1	1	0	
	L	3	8	9	
	T	1	5	7	
		5	4	6	

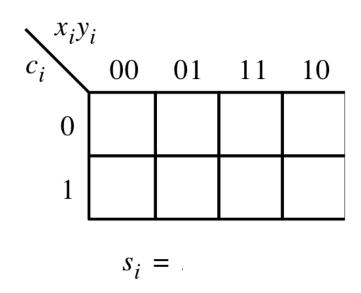
Problem Statement and Truth Table

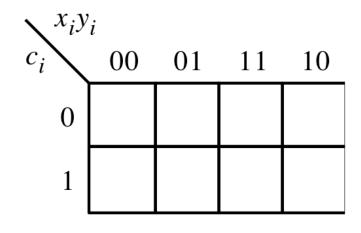
 c_{i+1}	c_i	
 	x_i	
 	y_i	
 	s_i	

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1		0	0	1
1	0	1	1	0
1		0	1	0
1	1	1	1	1

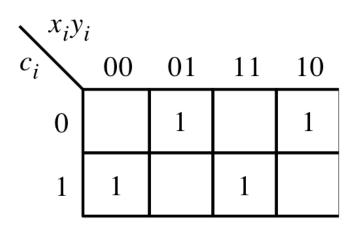




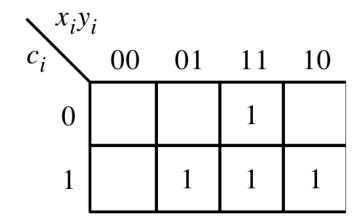
$$c_{i+1} =$$

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	0 0 0 1 0	0 1 1 0 1 0
1 1	1 1	0 1	1 1	0 1

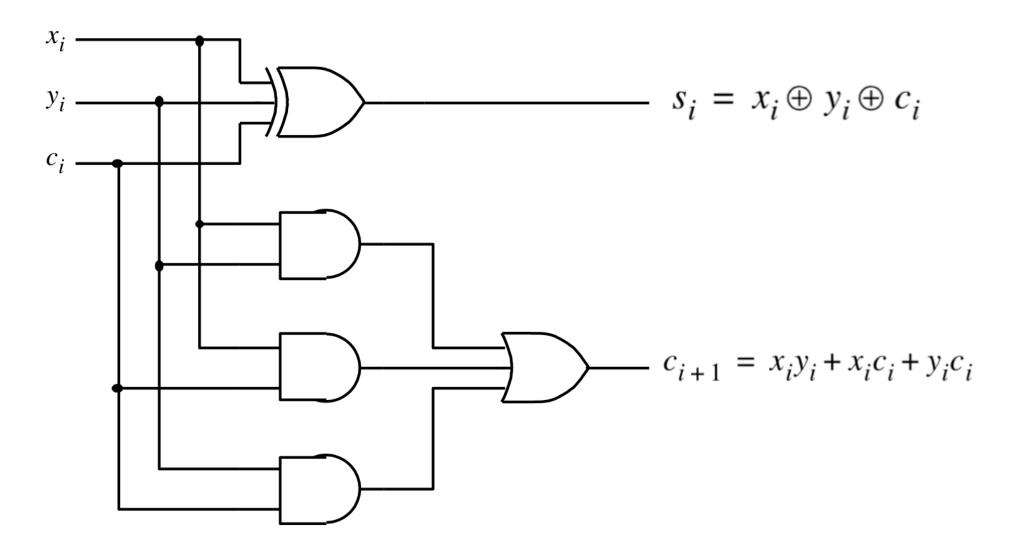


$$s_i = x_i \oplus y_i \oplus c_i$$

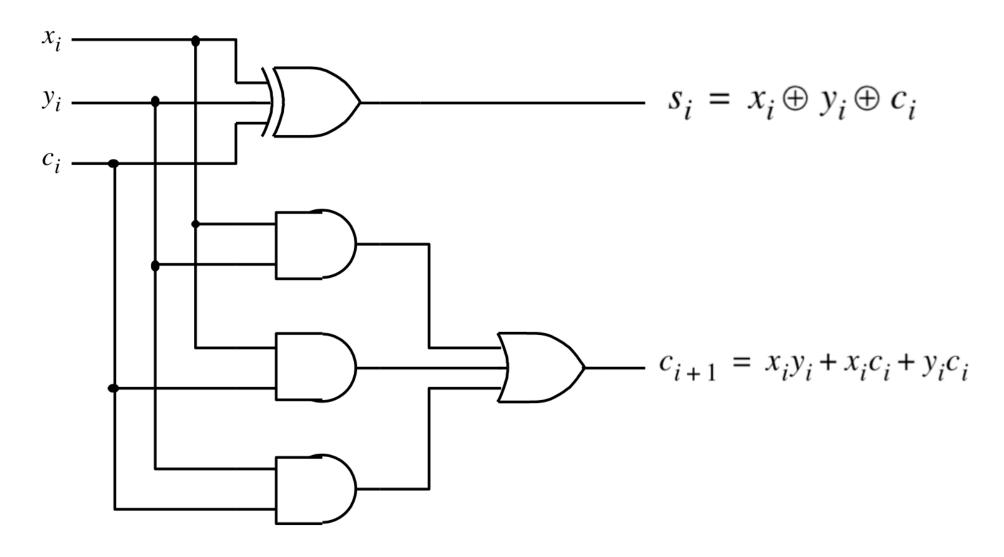


$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

The circuit for the two expressions



This is called the Full-Adder



$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

$$s_i = (\overline{x}_i y_i + x_i \overline{y}_i) \overline{c}_i + (\overline{x}_i \overline{y}_i + x_i y_i) c_i$$
$$= (x_i \oplus y_i) \overline{c}_i + (\overline{x}_i \oplus y_i) c_i$$
$$= (x_i \oplus y_i) \oplus c_i$$

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

Can you prove this?

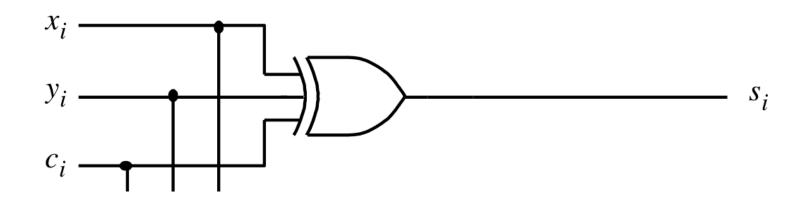
$$s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$$

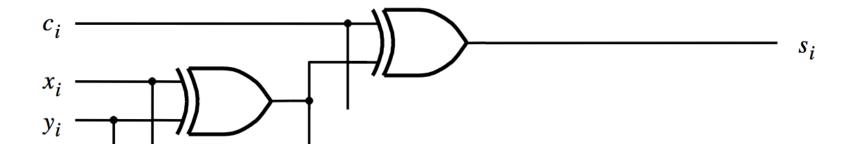
$$= (x_{i} \oplus y_{i})\overline{c}_{i} + (x_{i} \oplus y_{i})e_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

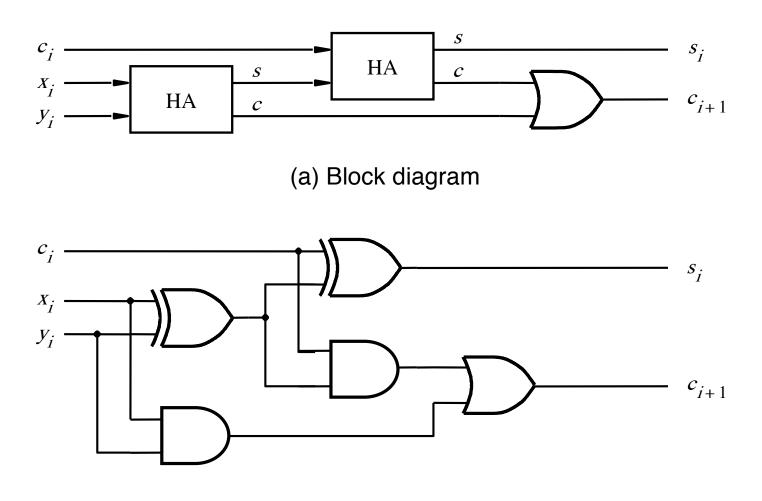
(s_i can be implemented in two different ways)

$$s_i = x_i \oplus y_i \oplus c_i$$



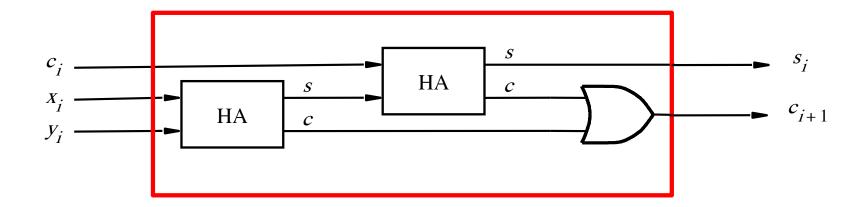


A decomposed implementation of the full-adder circuit

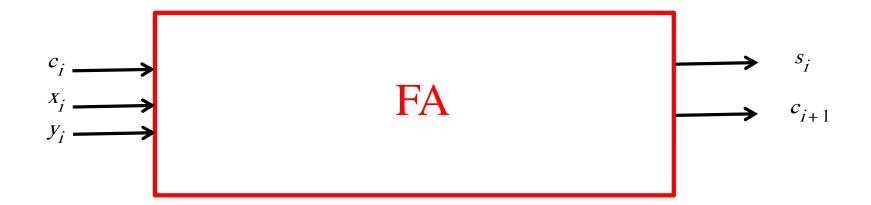


(b) Detailed diagram

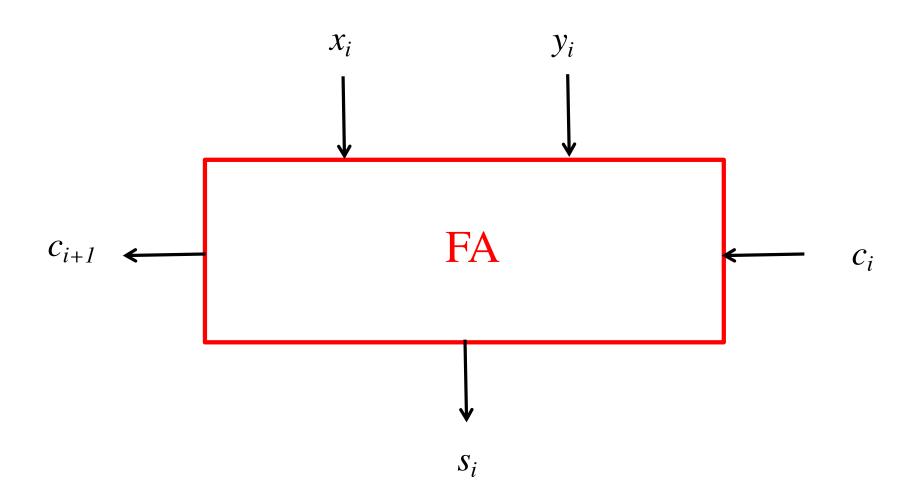
The Full-Adder Abstraction



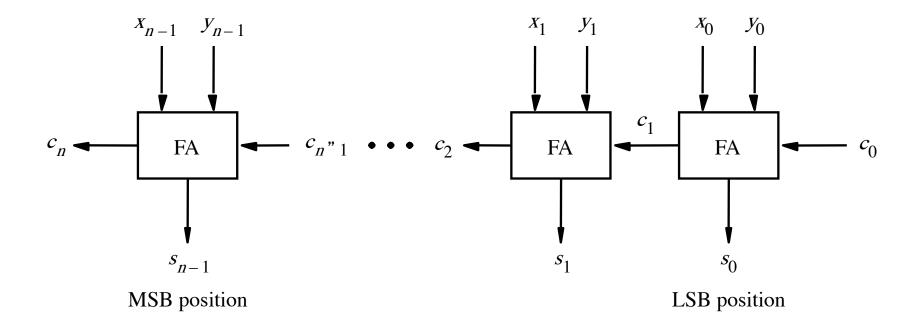
The Full-Adder Abstraction



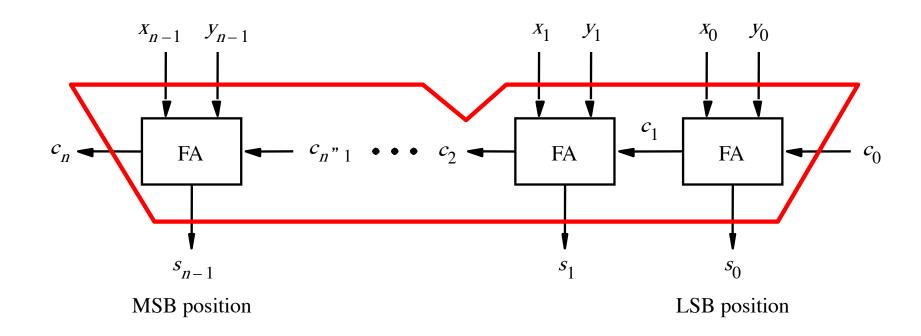
We can place the arrows anywhere



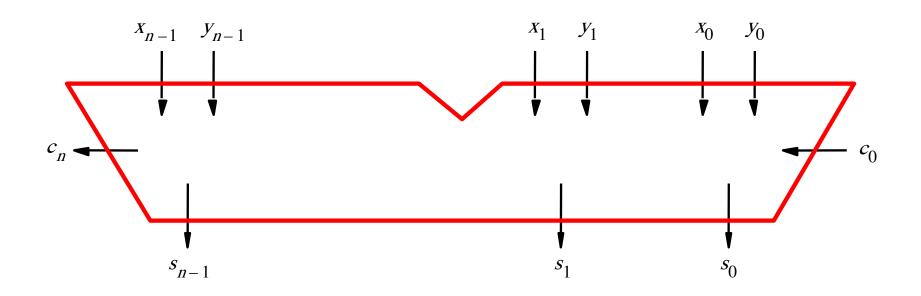
n-bit ripple-carry adder



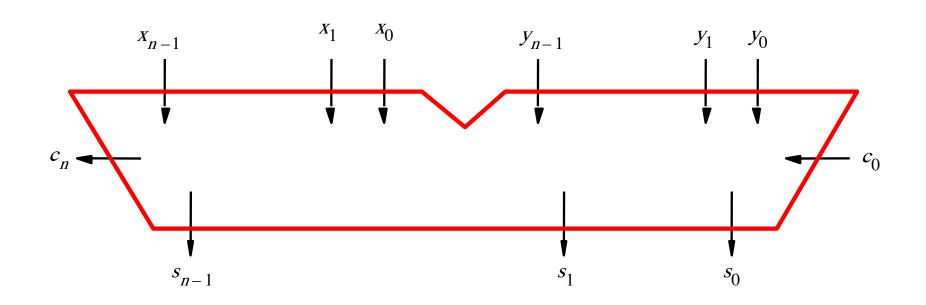
n-bit ripple-carry adder abstraction



n-bit ripple-carry adder abstraction



The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same



Design Example:

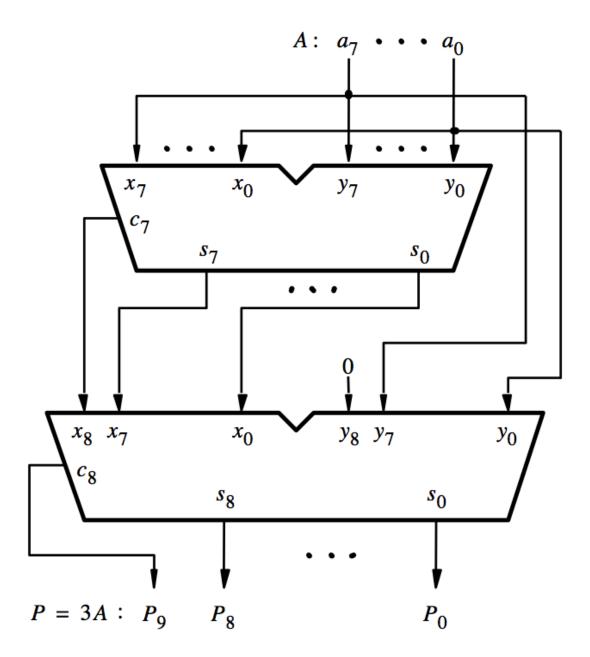
Create a circuit that multiplies a number by 3

How to Get 3A from A?

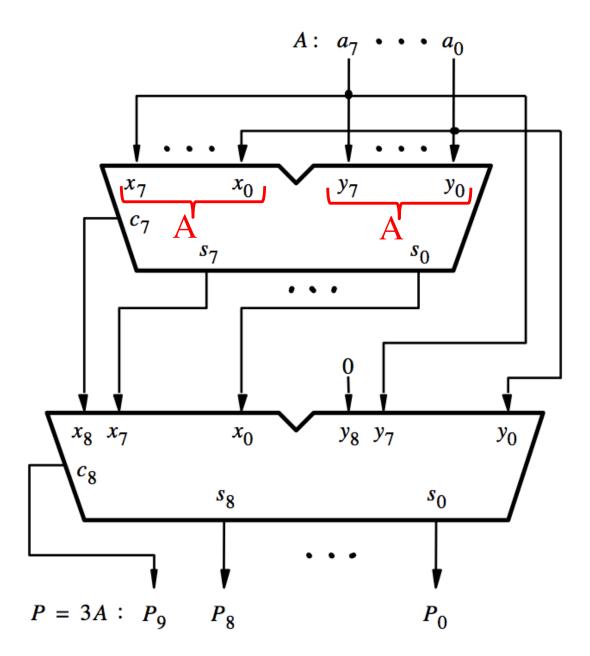
•
$$3A = A + A + A$$

•
$$3A = (A+A) + A$$

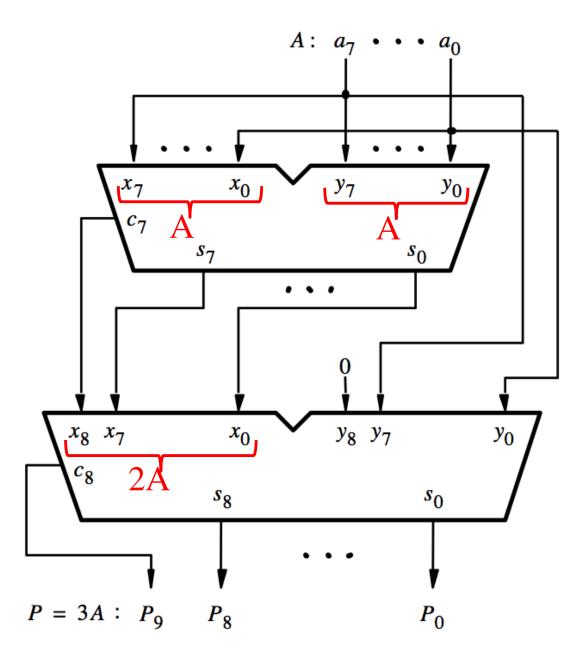
•
$$3A = 2A + A$$



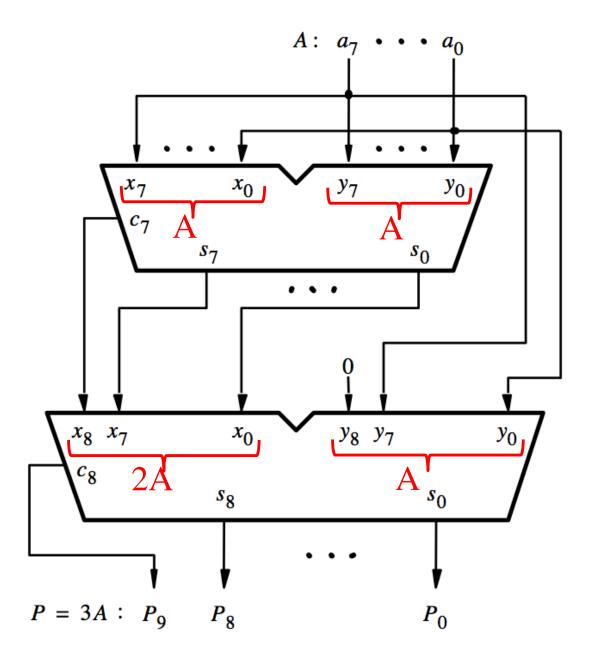
[Figure 3.6a from the textbook]



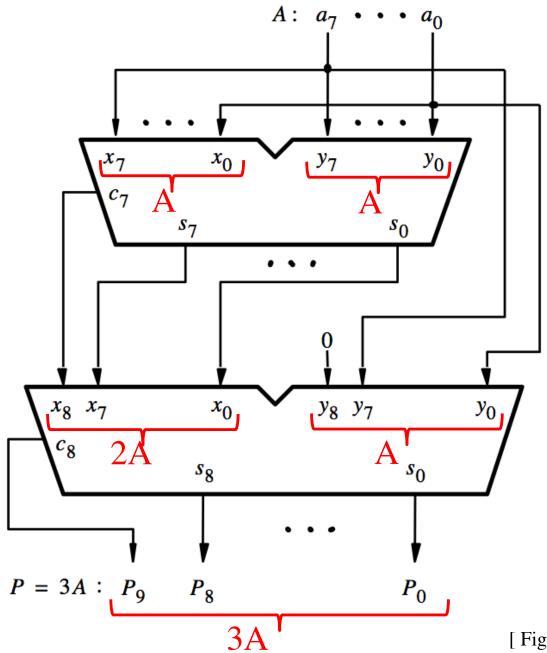
[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = ?$$

$$542 \times 10 = ?$$

$$1245 \times 10 = ?$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

Binary Multiplication by 2

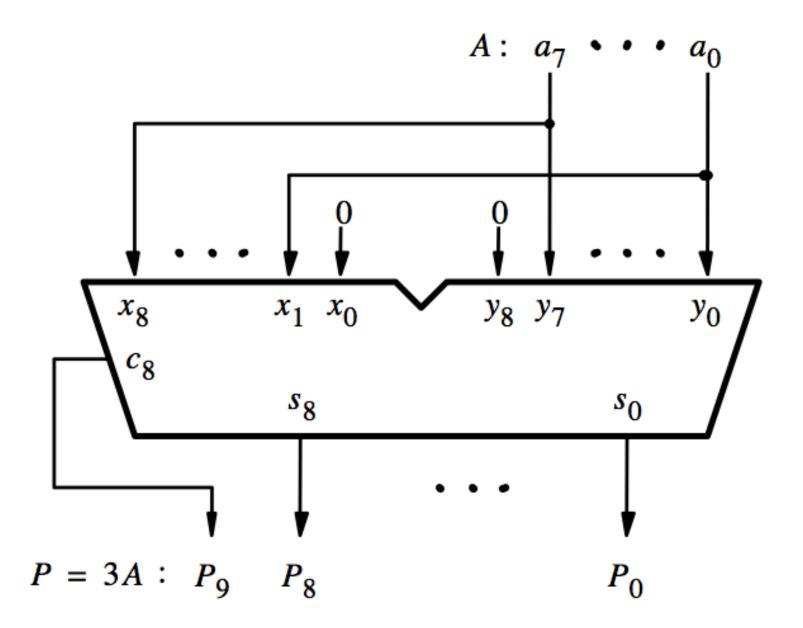
What happens when we multiply a number by 2?

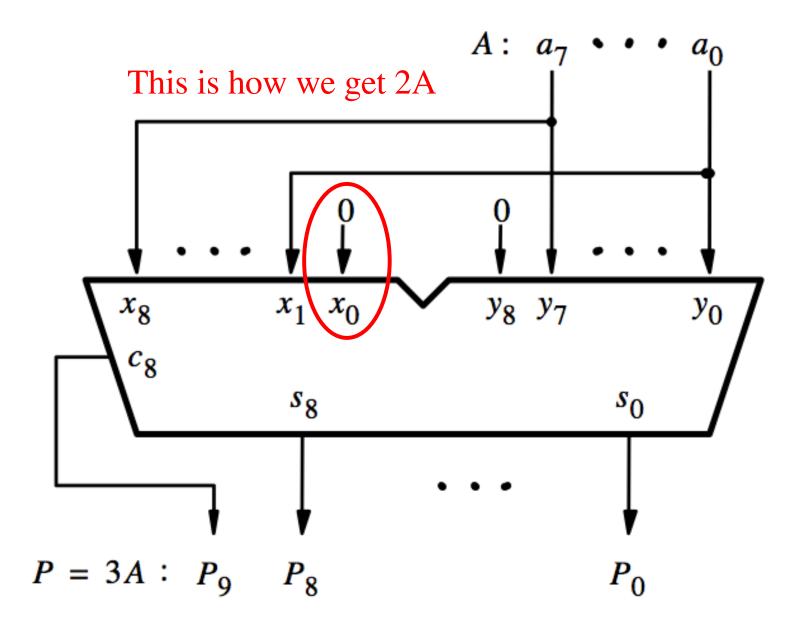
011 times 2 = 0110

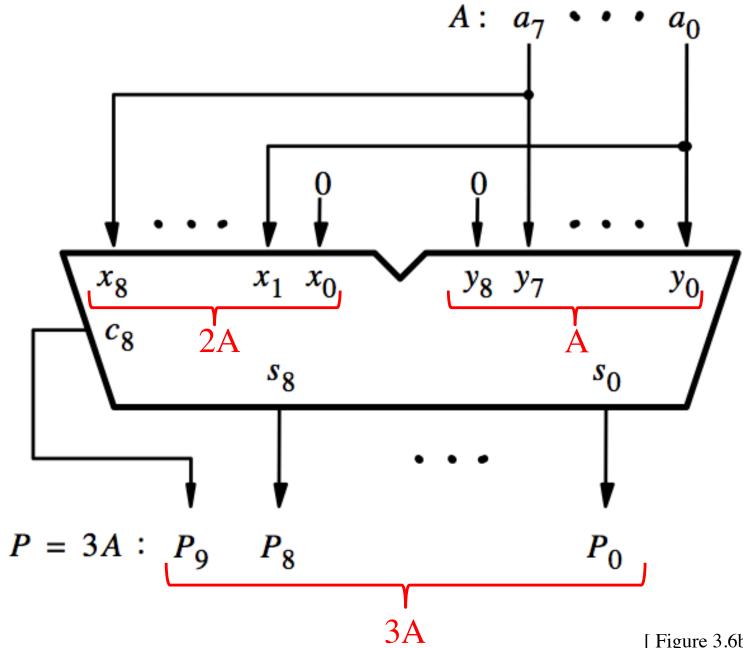
101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number







[Figure 3.6b from the textbook]

Questions?

THE END