

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Mealy State Model

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 10 is out
- It is due on Monday Nov 12 @ 4pm

Administrative Stuff

- Final Project
- Posted on the class web page (Labs section)
- Pick one of the problems and solve it.
- Your grade will not depend on which project you pick
- By next Wednesday you need to select your project and send an e-mail to your lab TAs

Sample E-mail

Hello TAs,

I decided to pick problem number x for my final project in CprE 281.

Thanks,
[your name, your lab section]

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Sample Problem

Implement a 11 detector. In other words, the output should be equal to 1 if two consecutive 1's have been detected on the input line.

The output should become 1 as soon as the second 1 is detected in the input.

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	z	0	0	0	0	1	0	0	1	1	0
0	0										

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	$z:$	0	0	0	0	1	0	0	1	1	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	$z:$	0	0	0	0	1	0	0	1	1	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output											
$z:$	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	$z:$	0	0	0	0	1	0	0	1	1	0

[Figure 6.22 from the textbook]

Sequences of input and output signals

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
output	$z:$	0	0	0	0	1	0	0	1	1	1
0	0	0									

State diagram of an FSM that realizes the task

[Figure 6.23 from the textbook]

Let's Do a Simulation

Clock cycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$	input	$w: \square$										
output												
$z:$	z	1	0	1	1	0	1	1	1	0	1	
0	0	0	1	0	0	1	1	0	0			

Let's Do a Simulation

Clock cycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ input $w:$\begin{tabular}{|lllllllllll}
\& 0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 0

1

 output $z:$

\& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0

\hline
\end{tabular}

Let's Do a Simulation

Clock cycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ input $w:$\begin{tabular}{|lllllllllll}
\& 0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 1 \& 0

1

 output $z:$

\& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0

\hline
\end{tabular}

Let's Do a Simulation

Clock cycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $\begin{array}{lccccccccccccc}\text { input } & w: & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \text { output } & z: & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$

Let's Do a Simulation

Clock cycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $\begin{array}{lccccccccccccc}\text { input } & w: & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \text { output } & z: & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
Output	z	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
Output	z	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	\mathfrak{t}_{3}	\mathfrak{t}_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	\mathfrak{t}_{3}	\mathfrak{t}_{4}	\mathfrak{t}_{5}	\mathfrak{t}_{6}	\mathfrak{t}_{7}	\mathfrak{t}_{8}	\mathfrak{t}_{9}	\mathfrak{t}_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	\mathfrak{t}_{3}	\mathfrak{t}_{4}	\mathfrak{t}_{5}	\mathfrak{t}_{6}	\mathfrak{t}_{7}	\mathfrak{t}_{8}	\mathfrak{t}_{9}	\mathfrak{t}_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
Output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	1	0	1	1	1	0
1												
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	\mathfrak{t}_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	0	1	1	1	0
1												
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
input	$w:$	0	1	0	1	1	0	1	1	1	0
	1										
output	$z:$	0	0	0	0	1	0	0	1	1	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	\mathfrak{t}_{2}	\mathfrak{t}_{3}	\mathfrak{t}_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	1	0
1												
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
Output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Let's Do a Simulation

Clock cycle:	\mathfrak{t}_{0}	\mathfrak{t}_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	\mathfrak{t}_{10}	
input	$w:$	0	1	0	1	1	0	1	1	1	0	1
output	$z:$	0	0	0	0	1	0	0	1	1	0	0

Now Let's Do the State Table for this FSM

Present state	Next state	Output z
	$w=0 \quad w=1$	$w=0 \quad w=1$
A		
B		

Now Let's Do the State Table for this FSM

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

The State Table for this FSM

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

Let's Do the State-assigned Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
A	0			
B				

Let's Do the State-assigned Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	A	B	0	0
B	A	B	0	1

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
A	0	0	1	0
1	0	1	0	1

The State-assigned Table

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
B	0	0	1	0
1	0	1	0	1

[Figure 6.25 from the textbook]

The State-assigned Table

[Figure 6.25 from the textbook]

The State-assigned Table

Present state	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
y	Y	Y	z	z
B	0	0	1	0
1	0	1	0	1

$$
\mathrm{Y}=\mathrm{D}=\mathrm{w} \quad \mathrm{z}=\mathrm{wy}
$$

This assumes D flip-flop
[Figure 6.25 from the textbook]

Circuit Implementation of the FSM

$$
\mathrm{Y}=\mathrm{D}=\mathrm{w} \quad \mathrm{z}=\mathrm{wy}
$$

[Figure 6.26 from the textbook]

Circuit \& Timing Diagram

(a) Circuit

(b) Timing diagram
[Figure 6.26 from the textbook]

What if we wanted the output signal to be delayed by 1 clock cycle?

Circuit Implementation of the Modified FSM

[Figure 6.27a from the textbook]

Circuit Implementation of the Modified FSM

This flip-flop delays the output signal by one clock cycle
[Figure 6.27a from the textbook]

We Have Seen This Diagram Before

$$
\begin{gathered}
Y_{1}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right)=w \\
Y_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right)=w y_{1} \\
z\left(\mathrm{y}_{2}, \mathrm{y}_{1}\right)=y_{2}
\end{gathered}
$$

[Figure 6.17 from the textbook]

Circuit \& Timing Diagram

(a) Circuit

[Figure 6.27 from the textbook]

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Moore Mealy

Moore

Moore

Notice that the output of the Moore machine is delayed by one clock cycle

Questions?

THE END

