

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Algorithmic State Machine (ASM) Charts

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 12 is out
- It is due on Monday Dec 3 @ 4pm

Administrative Stuff

- The FINAL exam is scheduled for
- Wednesday Dec 12 @ 12:00-2:00 PM
- It will be in this room.
http://www.registrar.iastate.edu/students/exams/fallexams

Standard Exams by Contact Hour

Time (by first contact)	Exam Day	Exam Date	Exam Time
Monday 7:30-8:29 a.m.	Monday	Dec. 10	4:30-6:30 p.m.
Monday 8:30-9:29 a.m.	Tuesday	Dec. 11	7:30-9:30 a.m.
Monday 9:30-10:29 a.m.	Wednesday	Dec. 12	9:45-11:45 a.m.
Monday 10:30-11:29 a.m.	Monday	Dec. 10	$9: 45-11: 45$ a.m.
Monday 11:30-12:29 p.m.	Wednesday	Dec. 12	$2: 15-4: 15$ p.m.
Monday 12:30-1:29 p.m.	Thursday	Dec. 13	12:00-2:00 p.m.
Monday 1:30-2:29 p.m.	Tuesday	Dec. 11	12:00-2:00 p.m.
Monday 2:30-3:29 p.m.	Monday	Dec. 10	$2: 15-4: 15$ p.m.
Monday 3:30-4:29 p.m.	Wednesday	Dec. 12	12:00-2:00 p.m.

Final Exam Format

- The exam will cover: Chapter 1 to Chapter 6, and Sections 7.1-7.2
- Emphasis will be on Chapter 5, 6, and 7
- The exam will be open book and open notes.
- You can bring up to 5 pages of handwritten or typed notes plus your textbook.

Final Exam Format

- The exam will be out of 130 points
- You need 95 points to get an A on this exam
- It will be great if you can score more than 100 points.
- but you can't roll over your extra points :

Topics for the Final Exam

- K-maps for 2, 3, and 4 variables
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adding and subtracting
- Serial adder
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Counters (up, down, synchronous, asynchronous)
- Registers and Register Files

Topics for the Final Exam

- Synchronous Sequential Circuits
- FSMs
- Moore Machines
- Mealy Machines
- State diagrams, state tables, state-assigned tables
- State minimization
- Designing a counter
- Arbiter Circuits
- Reverse engineering a circuit
- ASM Charts
- Register Machines
- Bus structure and Simple Processors
- Something from Star Wars

Reading Material for Next Lecture

- "The Seven Secrets of Computer Power Revealed" by Daniel Dennett.
- This is Chapter 24 in his book "Intuition Pumps and Other Tools for Thinking", 2013

Elements used in ASM charts

(a) State box

(b) Decision box

(c) Conditional output box

State Box

[Figure 6.81a from the textbook]

State Box

- Indicated with a rectangle
- Equivalent to a node in the State diagram
- The name of the state is written outside the box
- Moore-type outputs are written inside the box
- Only the output that must be set to 1 is written (by default, if an output is not listed it is set to 0)

Decision Box

[Figure 6.81b from the textbook]

Decision Box

- Indicated with a diamond shape
- Used for a condition expression that must be tested
- The exit path is chosen based on the outcome of the test
- The condition is on one or more inputs to the FSM
- Shortcut notation: w means "is w equal to 1?"

Conditional Output Box

- Indicated with an oval shape
- Used for a Mealy-type output signals
- The outputs depend on the state variables and inputs
- The condition that determines when such outputs are generated is placed in a separate decision box

Some Examples

FSM
ASM chart

[Figure 6.3 from the textbook]

[Figure 6.82 from the textbook]

ASM chart

[Figure 6.83 from the textbook]

FSM

ASM chart

[Figure 6.73 from the textbook]

[Figure 6.84 from the textbook]

ASM Chart is different from a Flow Chart

- The ASM chart implicitly includes timing info
- It is assumed that the underlying FSM changes from one state to another on every active clock edge
- Flow charts don't make that assumption.

The general model for a sequential circuit

[Figure 6.85 from the textbook]

The general model for a sequential circuit

$M=(W, Z, S, \varphi, \lambda)$

- $\quad W, Z$, and S are finite, nonempty sets of inputs, outputs, and states, respectively. φ is the state transition function, such that $S(t+1)=\varphi[W(t), S(t)]$. λ is the output function, such that $\lambda(t)=\lambda[S(t)]$ for the Moore model and $\lambda(t)=$ $\lambda[W(t), S(t)]$ for the Mealy model.

Examples of Solved Problems

Example 6.12

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1 ; otherwise to 0 .

State Diagram

[Figure 6.86 from the textbook]

State Table for the FSM

State Table for the FSM

Present state	Next state		Output
	$w=0$	$w=1$	
A	B	D	0
B	C	D	0
C	C	D	1
D	B	E	0
E	B	E	1

[Figure 6.87 from the textbook]

State-Assigned Table for the FSM

Present state	Next state		Output
	$w=0$	$w=1$	
A	B	D	0
B	C	D	0
C	C	D	1
D	B	E	0
E	B	E	1

	Present state $y_{3} y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	001	011	0
B	001	010	011	0
C	010	010	011	1
D	011	001	100	0
E	100	001	100	1

[Figure 6.88 from the textbook]

State-Assigned Table for the FSM

Present state $y_{3} y_{2} y_{1}$	Next state		Output
		$w=0$	
	$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	001	011
B	001	010	011
C	010	010	011
D	011	001	0
E	100	001	100
0	100	1	

[Figure 6.88 from the textbook]

State-Assigned Table for the FSM

How can we derive this expression?

State-Assigned Table for the FSM

	Present state $y_{3} y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	001	011	0
B	001	010	011	0
C	010	010	011	1
D	011	001	100	0
E	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

Truth Table for the Output z

Truth Table for the Output z

Truth Table for the Output z

Present state $y_{3} y_{2} y_{1}$	Next state		Output z				
	$w=0$	$w=1$					
	$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$		y_{3}	y_{2}	y_{l}	z
000	001	011	0	0	0	0	0
001	010	011	0	0	0	1	0
010	010	011	1	0	1	0	1
011	001	100	0	0	1	1	0
100	001	100	1	1	0	0	1
101	ddd	ddd	d	1	0	1	d
110	ddd	ddd	d	1	1	0	d
111	ddd	ddd	d	1	1	1	d

K-Map for the Output z

The Expression for the Output z

State-Assigned Table for the FSM

		Next state		Output
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	001	011	0
B	001	010	011	0
C	010	010	011	1
D	011	001	100	0
E	100	001	100	1

$Y_{1}=w \bar{y}_{1} \bar{y}_{3}+w \bar{y}_{2} \bar{y}_{3}+\bar{w} y_{1} y_{2}+\overline{w y} \bar{y}_{2}$
$Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}+w \bar{y}_{2} \bar{y}_{3}$
$Y_{3}=w y_{3}+w y_{1} y_{2}$
How can we derive these expressions?

Truth Table for Y_{3}

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\mathbf{1}}$
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	d		
0	1	1	0	d		
0	1	1	1	d		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	d		
1	1	1	0	d		
1	1	1	1	d		

Truth Table for Y_{2}

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\mathbf{1}}$
0	0	0	0	0	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	d	d	
0	1	1	0	d	d	
0	1	1	1	d	d	
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	1	
1	0	1	1	1	0	
1	1	0	0	1	0	
1	1	0	1	d	d	
1	1	1	0	d	d	
1	1	1	1	d	d	

Truth Table for Y_{1}

		Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	0011	011	0
B	001	010	011	0
C	010	010	011	1
D	011	001	100	0
E	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

K-Maps for $\mathbf{Y}_{3}, Y_{2}, Y_{1}$

$\begin{aligned} & Y_{3} \\ & y_{2} y_{1} \end{aligned}$		01	11	10
00	0	0	1	0
01	0	d	d	0
11	0	d	d	1
10	0	d	d	0

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

K-Maps for $\mathbf{Y}_{3}, Y_{2}, Y_{1}$

Y_{3}
$y_{2} y_{1}$

00

0

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Expressions for Y_{3}, Y_{2}, Y_{1}

 Y_{3}| $y_{2} y_{1} \lambda^{W}$ | | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 0 | 1 | 0 |
| 01 | 0 | d | d | 0 |
| 11 | 0 | d | d | 1 |
| 10 | 0 | d | d | 0 |

Y_{1}

$y_{2} y_{1}{ }^{W}$	00	01	11	10
00	$\overline{1}$	1	0	1
01	0	d	d	1
11	1	d	d	0
10	0	d	d	1

Y_{2}				
$y_{2} y_{1}^{W} y_{3}$				
			1	10
00	0	0	0	1
01	1	d	d	1
11	0	d	d	0
10	1	d	d	1

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	$\boldsymbol{y}_{\boldsymbol{1}}$	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
,	\cap	1	,	,	\cap	\cap

$Y_{1}=w \bar{y}_{1} \bar{y}_{3}+w \bar{y}_{2} \bar{y}_{3}+\bar{w} y_{1} y_{2}+\overline{w y_{1}} \bar{y}_{2}$
$Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}+w \bar{y}_{2} \bar{y}_{3}$
$Y_{3}=w y_{3}+w y_{1} y_{2}$

Next State and Output Expressions

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1} \bar{y}_{3}+w \bar{y}_{2} \bar{y}_{3}+\bar{w} y_{1} y_{2}+\overline{w y_{1}} \bar{y}_{2} \\
& Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}+w \bar{y}_{2} \bar{y}_{3} \\
& Y_{3}=w y_{3}+w y_{1} y_{2} \\
& z=y_{3}+\bar{y}_{1} y_{2}
\end{aligned}
$$

An Improved State-Assigned Table

Present state $y_{3} y_{2} y_{1}$	Next state		Output
		$w=0$	
	$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	001	011
B	001	010	011
C	010	010	011
D	011	001	10
E	100	001	100

	Present state $y_{3} y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	100	110	0
B	100	101	110	0
C	101	101	110	1
D	110	100	111	0
E	111	100	111	1
	\uparrow			
	E-whe	$y_{3}=1$		

[Figure 6.87 from the textbook]
[Figure 6.89 from the textbook]

An Improved State-Assigned Table

Present state	Next state		Output
	$w=0$	$w=1$	
A	B	D	0
B	C	D	0
C	C	D	1
D	B	E	0
E	B	E	1

Present state	Next state		Output
	$w=0$	$w=1$	
A	B	D	0
B	C	D	0
C	C	D	1
D	B	E	0
E	B	E	1

	Present state $y_{3} y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	001	011	0
B	001	010	011	0
C	010	010	011	1
D	011	001	100	0
E	100	001	100	1

[Figure 6.87 from the textbook]
[Figure 6.89 from the textbook]

An Improved State-Assigned Table

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{3} y_{2} y_{1}$		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$

[Figure 6.89 from the textbook]

An Improved State-Assigned Table

Present state $y_{3} y_{2} y_{1}$	Next state		Output	
	$w=0$	$w=1$		
	$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$		
A	000	100	110	0
B	100	101	110	0
C	101	101	110	1
D	110	100	111	0
E	111	100	111	1

An Improved State-Assigned Table

Truth Table for the Output z

	$\begin{gathered} \text { Present } \\ \text { state } \\ y_{3} y_{2} y_{1} \end{gathered}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
B	100	101	110	0
C	101	101	110	1
D	110	100	111	0
E	111	100	111	1

y_{3}	y_{2}	y_{1}	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Expression for the Output z

							01	11		${ }_{1}$
					0	0	d	0		
	Present	Next	state		1	d	d	1		
	state	$w=0$	$w=1$	Output						
	$y_{3} y_{2} y_{1}$	$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	2		y_{3}	y_{2}	y_{t}		
A	000	100	110	0		0	0	0	0	
	001	ddd	ddd	d		0	0	1	d	
	010	ddd	ddd	d		0	1	0	d	
	011	ddd	ddd	d		0	1	1	d	
B	100	101	110	0		1	0	0	0	
C	101	101	110	1		1	0	1	1	
D	110	100	111	0		1	1	0	0	
E	111	100	111	1		1	1	1	1	

Truth Table for Y_{3}

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$
0	0	0	0	1		
0	0	0	1	d		
0	0	1	0	d		
0	0	1	1	d		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	d		
1	0	1	0	d		
1	0	1	1	d		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

Truth Table for Y_{2}

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	\boldsymbol{Y}_{1}
0	0	0	0	1	0	
0	0	0	1	d	d	
0	0	1	0	d	d	
0	0	1	1	d	d	
0	1	0	0	1	0	
0	1	0	1	1	0	
0	1	1	0	1	0	
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	0	1	d	d	
1	0	1	0	d	d	
1	0	1	1	d	d	
1	1	0	0	1	1	
1	1	0	1	1	1	
1	1	1	0	1	1	
1	1	1	1	1	1	

Truth Table for Y_{1}

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	\boldsymbol{Y}_{1}
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

K-Maps for $\mathbf{Y}_{3}, Y_{2}, Y_{1}$

$\begin{aligned} & Y_{3} \\ & y_{2} y_{1} y_{3} \end{aligned}$				
00	1	1	1	1
01	d	1	1	d
11	d	1	1	d
10	d	1	1	d

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

K-Maps for $\mathbf{Y}_{3}, Y_{2}, Y_{1}$

Y_{3}				
$y_{2} y_{1}{ }^{W}$		01	11	10
00	1	1	1	1
01	d	1	1	d
11	d	1	1	d
10	d	1	1	d

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	\boldsymbol{Y}_{1}
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

K-Maps for $\mathbf{Y}_{3}, Y_{2}, Y_{1}$

\boldsymbol{w}	\boldsymbol{y}_{3}	\boldsymbol{y}_{2}	\boldsymbol{y}_{1}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{2}	\boldsymbol{Y}_{1}
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
	y_{2}	0	0	1	1	0
	0	1	1	1	0	
	1	0	1	1	1	

An Improved State-Assigned Table

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{3} y_{2} y_{1}$		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$

$$
\begin{aligned}
Y_{1} & =w y_{2}+\bar{w} y_{3} \bar{y}_{2} \\
Y_{2} & =w \\
Y_{3} & =1 \\
z & =y_{1}
\end{aligned}
$$

An Improved State-Assigned Table

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{3} y_{2} y_{1}$		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$

$$
\begin{aligned}
Y_{1} & =w y_{2}+\bar{w} y y_{3} y_{2} \\
Y_{2} & =w \\
Y_{3} & =1 \\
z & =y_{1}
\end{aligned}
$$

Example 6.13

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- But do this with two different FSMs. The first one detects two consecutive 1's. The second one detects two consecutive 0's.
- If either condition (i.e., output of FSM) is true then the output z should be set to 1 ; otherwise to 0 .

Example 6.13

(Construct the first FSM)

FSM to detect two consecutive 1's (this was the first example in Chapter 6)

[Figure 6.3 from the textbook]

Present state	Next state		Output
	$w=0 \quad w=1$		
A			
B			
C			

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

[Figure 6.4 from the textbook]

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$
\begin{aligned}
& \mathrm{A} \sim 00 \\
& \mathrm{~B} \sim 01 \\
& \mathrm{C} \sim 11
\end{aligned}
$$

A Better State Encoding

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Present state	Next state		
	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$
A	00	00	01
B	01	00	11
C	11	00	11
10	$d d$	$d d$	1

Let's Derive the Logic Expressions

$\begin{array}{c}\text { Present } \\ \text { state }\end{array}$	Next state		
	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$

Let's Derive the Logic Expressions

		Present state	Next state		Output z
			$w=0$	$w=1$	
Warning: This table does not		$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
enumerate $y_{2} y_{1}$, in the	A	00	00	01	0
standard way, so be careful when filling	B	01	00	11	0
careful when filling out the K-Map.	C	11	00	11	1
		10	$d d$	$d d$	d

Y_{2}

Let's Derive the Logic Expressions

		Present state	Next state		Output z
			$w=0$	$w=1$	
Warning: This table does not		$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
enumerate $y_{2} y_{1}$, in the	A	00	00	01	0
standard way, so be	B	01	00	11	0
careful when filling out the K-Map.	C	11	00	11	1
		10	$d d$	$d d$	d

Y_{2}

$Y_{2}\left(w, y_{2}, y_{1}\right)=w y_{1}$

$Y_{1}\left(w, y_{2}, y_{1}\right)=w$

$z\left(y_{2}, y_{1}\right)=y_{2}$

Original State
Encodings

New State
Encodings

The Circuit Diagram

$$
\begin{aligned}
& Y_{1}\left(w, y_{2}, y_{1}\right)=w \\
& Y_{2}\left(w, y_{2}, y_{1}\right)=w y_{1}
\end{aligned}
$$

$$
z\left(y_{2}, y_{1}\right)=y_{2}
$$

[Figure 6.17 from the textbook]

Example 6.13

(Construct the second FSM)

FSM to detect two consecutive 0's

This is similar to the previous one. Just invert the w's and relabel the states to D,E,F.

Present state	Next state	
	$w=0 \quad w=1$	
D		
E		
F		

Present state	Next state		Output
	$w=0$	$w=1$	
D	E	D	0
E	F	D	0
F	F	D	1

FSM that detects a sequence of two zeros

Present state	Ne xt state		Output
	$w=0$	$w=1$	
D	E	D	0
E	F	D	0
F	F	D	1

(a) State table

Present state	Next state		
	$w=0$	$w=1$	Output
	$z_{\text {zeros }}$		
D	$Y_{4} Y_{3}$	$Y_{4} Y_{3}$	
E	00	01	00
F	01	11	00
11	11	00	0
10	$d d$	$d d$	d

[Figure 6.90 from the textbook]

FSM that detects a sequence of two zeros

Present state	Ne xt state		Output
	$w=0$	$w=1$	
D	E	D	0 D F
F	$\longleftrightarrow \mathrm{D}$	0 D	D
1			

Only these two columns are swapped relative to the first FSM. And the states have different names now.
(a) State table

Only these two columns are swapped relative to the first FSM.
[Figure 6.90 from the textbook]

Let's Derive the Logic Expressions

Present state	Next state		
	$w=0$	$w=1$	
	$y_{4} y_{3}$	$Y_{4} Y_{3}$	$Y_{4} Y_{3}$
D	00	01	00
E	01	11	00
F	11	11	00
10	$d d$	$d d$	1

Let's Derive the Logic Expressions

Present state	Next state		
	$w=0$	$w=1$	
	$y_{4} y_{3}$	$Y_{4} Y_{3}$	$Y_{4} Y_{3}$
D	00	01	00
E	01	11	00
F	11	11	00
10	$d d$	$d d$	1

Let's Derive the Logic Expressions

Present state	Next state		
	$w=0$	$w=1$	
	$y_{4} y_{3}$	$Y_{4} Y_{3}$	$Y_{4} Y_{3}$
D	00	01	00
E	01	11	00
F	11	11	00
10	$d d$	$d d$	1

$Y_{4}\left(w, y_{4}, y_{3}\right)=\bar{w} y_{3}$

$z\left(y_{4}, y_{3}\right)=y_{4}$

The Circuit Diagram

$$
\begin{aligned}
Y_{3}\left(w, y_{4}, y_{3}\right) & =\bar{w} \\
Y_{4}\left(w, y_{4}, y_{3}\right) & =\bar{w} y_{3} \\
z\left(y_{2}, y_{1}\right) & =y_{4}
\end{aligned}
$$

Example 6.13

(Combine the two FSMs)

The Two FSMs

Detect two consecutive 1's

The Two Circuit Diagrams

Detect two consecutive 1's
Detect two consecutive 0's

The Combined Circuit Diagram

Detect two consecutive 1's or two consecutive 0's

Example 6.14

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1 ; otherwise to 0 .
- Implement this as a Mealy-type machine

State Diagram

[Figure 6.91 from the textbook]

Building the State Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	B	C	0	0
B	B	C	1	0
C	B	C	0	1

[Figure 6.92 from the textbook]

State Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	B	C	0	0
B	B	C	1	0
C	B	C	0	1

[Figure 6.92 from the textbook]

Building the State-Assigned Table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	B	C	0	0
B	B	C	1	0
C	B	C	0	1

[Figure 6.93 from the textbook]

State-Assigned Table

$\begin{array}{c}\text { Present } \\ \text { state }\end{array}$	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z

[Figure 6.93 from the textbook]

State-Assigned Table

State-Assigned Table

Present state	Next state		Output		
	$w=0$	$w=1$	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z	z
A	00	01	11	0	0
B	01	01	11	1	0
C	11	01	11	0	1

State-Assigned Table

Present state	Next state		Output		
	$w=0$	$w=1$	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z	z
	00	01	11	0	0
B	01	01	11	1	0
C	10	dd	dd	d	d
C	11	01	11	0	1

Truth Table for $\mathrm{Y}_{2}, \mathrm{Y}_{1}$, and z

$\begin{array}{c}\text { Present } \\ \text { state }\end{array}$	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z

\boldsymbol{w}	$\boldsymbol{y}_{\mathbf{2}}$	$\boldsymbol{y}_{\boldsymbol{1}}$	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{1}}$	\boldsymbol{z}
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_{2}, Y_{1}, and z

\boldsymbol{w}	\boldsymbol{y}_{2}	$\boldsymbol{y}_{\boldsymbol{I}}$	\boldsymbol{Y}_{2}	$\boldsymbol{Y}_{\boldsymbol{I}}$	\boldsymbol{z}
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_{2}, Y_{1}, and z

State-Assigned Table

$\begin{array}{c}\text { Present } \\ \text { state }\end{array}$	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z

$$
\begin{aligned}
& Y_{1}=1 \\
& Y_{2}=w \\
& z=\bar{w} y_{1} \bar{y}_{2}+w y_{2}
\end{aligned}
$$

State-Assigned Table

$\begin{array}{c}\text { Present } \\ \text { state }\end{array}$	Next state		Output	
	$w=0$	$w=1$	$w=0$	$w=1$
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=w \\
& z=\bar{w} y_{1} \bar{y}_{2}+w y_{2}
\end{aligned}
$$

The Circuit Diagram

The Circuit Diagram

The Circuit Diagram

The Circuit Diagram

The Simplified Circuit Diagram

$$
\begin{aligned}
& Y_{2}=w \\
& z=\bar{w} \bar{y}_{2}+w y_{2}
\end{aligned}
$$

Example 6.15

Goal

Implement this state-assigned Table using JK flip-flops

	Present state $y_{3} y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$	
A	000	100	110	0
B	100	101	110	0
C	101	101	110	1
D	110	100	111	0
E	111	100	111	1

Excitation table with JK flip-flops

Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Output
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	
z									
A	000	100	$1 d$	$0 d$	$0 d$	110	$1 d$	$1 d$	$0 d$
B	100	101	$d 0$	$0 d$	$1 d$	110	$d 0$	$1 d$	$0 d$
C	101	101	$d 0$	$0 d$	$d 0$	110	$d 0$	$1 d$	$d 1$
D	110	100	$d 0$	$d 1$	$0 d$	111	$d 0$	$d 0$	$1 d$
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$

$a(t) \rightarrow a(t+1)$	$J K$
$0 \rightarrow 0$	$0 d$
$0 \rightarrow 1$	$1 d$
$1 \rightarrow 0$	$d 1$
$1 \rightarrow 1$	$d 0$

[Figure 6.94 from the textbook]

Excitation table with JK flip-flops

	Presentstate$y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	Od	Od	110	$1 d$	$1 d$	Od	0
B	100	101	$d 0$	$0 d$	1d	110	d0	$1 d$	0d	0
C	101	101	$d 0$	0d	d0	110	$d 0$	$1 d$	$d 1$	1
D	110	100	$d 0$	$d 1$	0d	111	$d 0$	$d 0$	$1 d$	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$	1

$a(t) \rightarrow a(t+1)$	J K
$0 \rightarrow 0$	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
$1 \rightarrow 1$	d 0

Excitation table with JK flip-flops

Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Output
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	
z									
A	000	100	$1 d$	$0 d$	$0 d$	110	$1 d$	$1 d$	$0 d$
B	100	101	$d 0$	$0 d$	$1 d$	110	$d 0$	$1 d$	$0 d$
C	101	101	$d 0$	$0 d$	$d 0$	110	$d 0$	$1 d$	$d 1$
D	110	100	$d 0$	$d 1$	$0 d$	111	$d 0$	$d 0$	$1 d$
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$

$\mathrm{Q}(\mathrm{t}) \rightarrow \mathrm{Q}(+1)$	J K
$0 \rightarrow 0$	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
$1 \rightarrow 1$	d 0

Excitation table with JK flip-flops

	Presentstate$y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	Od	0d	110	$1 d$	$1 d$	Od	0
B	100	101	$d 0$	0d	$1 d$	110	d0	$1 d$	0d	0
C	101	101	$d 0$	0d	d0	110	$d 0$	$1 d$	$d 1$	1
D	110	100	$d 0$	$d 1$	0d	111	$d 0$	$d 0$	$1 d$	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$	1

$a(t) \rightarrow a(t+1)$	J.
$0 \rightarrow 0$	$0 \quad d$
$0 \rightarrow 1$	$1 d$
$1 \rightarrow 0$	$d 1$
$1 \rightarrow 1$	$d \quad 0$

Excitation table with JK flip-flops

	Presentstate$y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	0d	0d	110	$1 d$	$1 d$	Od	0
B	100	101	d0	0d	$1 d$	110	$d 0$	$1 d$	Od	0
C	101	101	$d 0$	Od	$d 0$	110	$d 0$	$1 d$	$d 1$	1
D	110	100	$d 0$	$d 1$	Od	111	$d 0$	$d 0$	$1 d$	0
E	111	100	$d 0$	$d 1$	d1	111	d0	$d 0$	$d 0$	1

$a(t) \rightarrow a(t+1)$	J K
$0 \rightarrow 0$	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
$1 \rightarrow 1$	d 0

Excitation table with JK flip-flops

Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Output
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	
z									
A	000	100	$1 d$	$0 d$	$0 d$	110	$1 d$	$1 d$	$0 d$
B	100	101	$d 0$	$0 d$	$1 d$	110	$d 0$	$1 d$	$0 d$
C	101	101	$d 0$	$0 d$	$d 0$	110	$d 0$	$1 d$	$d 1$
D	110	100	$d 0$	$d 1$	$0 d$	111	$d 0$	$d 0$	$1 d$
E	111	10	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$

$\mathrm{Q}(\mathrm{t}) \rightarrow \mathrm{Q}(+1)$	J K
$0 \rightarrow 0$	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
$1 \rightarrow 1$	d 0

Excitation table with JK flip-flops

	Presentstate$y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	900	100	$1 d$	Od	0d	110	$1 d$	$1 d$	Od	0
B	100	101	$d 0$	$0 d$	$1 d$	110	d0	$1 d$	0d	0
C	101	101	$d 0$	0d	d0	110	$d 0$	$1 d$	$d 1$	1
D	110	100	$d 0$	$d 1$	0d	111	$d 0$	$d 0$	$1 d$	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$	1

$a(t) \rightarrow a(t+1)$	J K
$0 \rightarrow 0$	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
$1 \rightarrow 1$	d 0

Excitation table with JK flip-flops

Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Output
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	
z									
A	000	100	$1 d$	$0 d$	$0 d$	110	$1 d$	$1 d$	$0 d$
B	100	101	$d 0$	$0 d$	$1 d$	110	$d 0$	$1 d$	$0 d$
C	101	101	$d 0$	$0 d$	$d 0$	110	$d 0$	$1 d$	$d 1$
D	110	100	$d 0$	$d 1$	$0 d$	111	$d 0$	$d 0$	$1 d$
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$

$a(t) \rightarrow a(t+1)$	JK
$0 \rightarrow 0$	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d
1	
$1 \rightarrow 1$	d

And so on...

The Expression for z

	$\begin{gathered} \text { Present } \\ \text { state } \\ y_{3} y_{2} y_{1} \end{gathered}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	0d	0d	110	$1 d$	$1 d$	0d	0
B	100	101	$d 0$	Od	$1 d$	110	$d 0$	$1 d$	Od	0
C	101	101	$d 0$	Od	$d 0$	110	$d 0$	$1 d$	$d 1$	1
D	110	100	$d 0$	$d 1$	Od	111	$d 0$	$d 0$	$1 d$	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$	1

z is equal to y_{1}

The Expression for J_{3}

Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs							Output	
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$		$J_{1} K_{1}$
	z								
A	000	100	$11 d$	$0 d$	$0 d$	110	$1 d$	$1 d$	$0 d$
B	100	101	$d 0$	$0 d$	$1 d$	110	$d 0$	$1 d$	$0 d$
C	101	101	$d 0$	$0 d$	$d 0$	110	$d 0$	$1 d$	$d 1$
D	110	100	$d 0$	$d 1$	$0 d$	111	$d 0$	$d 0$	$1 d$
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$

J_{3} is equal to 1

The Expression for K_{3}

	Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Outputz
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	Od	Od	110	$1 d$	$1 d$	Od	0
B	100	101	do	Od	$1 d$	110	d0	$1 d$	Od	0
C	101	101	do	Od	d0	110	d0	$1 d$	$d 1$	1
D	110	100	do	$d 1$	Od	111	d0	$d 0$	$1 d$	0
E	111	100	d0	$d 1$	$d 1$	111	d0	$d 0$	$d 0$	1

K_{3} is equal to 0

The Expression for $\mathbf{J}_{\mathbf{2}}$

	Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	Od	$0 d$	110	$1 d$	112	Od	0
B	100	101	$d 0$	02.	$1 d$	110	$d 0$	12.	0d	0
C	101	101	$d 0$	02	20	110	$d 0$	12	$d 1$	1
D	110	100	$d 0$	d 1	$0 d$	111	$d 0$	20	$1 d$	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$	1

J_{2} is equal to w

The Expression for $\mathrm{K}_{\mathbf{2}}$

	Present state $y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	0 d	Od	110	$1 d$	$1 d$	Od	0
B	100	101	d0	$0 d$	$1 d$	110	d0	$1 d$	Od	0
C	101	101	$d 0$	$0 d$	d0	110	d0	$1 d$	d1	1
D	110	100	$d 0$	01	Od	111	$d 0$	do	$1 d$	0
E	111	100	$d 0$	d 1	$d 1$	111	$d 0$	d0	$d 0$	1

K_{2} is equal to $\overline{\mathrm{w}}$

The Expression for \mathbf{J}_{1}

	Presentstate$y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	Od	0d	110	$1 d$	$1 d$	Od	0
B	100	101	$d 0$	0d	12	110	20	$1 d$	0d	0
C	101	101	$d 0$	Od	$d 0$	110	$d 0$	$1 d$	${ }^{1} 1$	1
D	110	100	$d 0$	$d 1$	Od	111		$d 0$	12	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	do	1

J_{1} is equal to $w y_{2}+\bar{w} y_{3} \bar{y}_{2}$

The Expression for K_{1}

K_{1} is equal to $\bar{w} y_{2}+w \overline{y_{2}} y_{1}$

All Logic Expressions

$$
\begin{aligned}
J_{1} & =w y_{2}+\bar{w} y_{3} \bar{y}_{2} \\
K_{1} & =\bar{w} y_{2}+w y_{1} \bar{y}_{2} \\
J_{2} & =w \\
K_{2} & =\bar{w} \\
J_{3} & =1 \\
K_{3} & =0 \\
z & =y_{1}
\end{aligned}
$$

Questions?

THE END

