

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Algorithmic State Machine (ASM) Charts

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 12 is out
- It is due on Monday Dec 3 @ 4pm

Administrative Stuff

- The FINAL exam is scheduled for
- Wednesday Dec 12 @ 12:00 2:00 PM

• It will be in this room.

Standard Exams by Contact Hour

Time (by first contact)	Exam Day	Exam Date	Exam Time
Monday 7:30-8:29 a.m.	Monday	Dec. 10	4:30-6:30 p.m.
Monday 8:30-9:29 a.m.	Tuesday	Dec. 11	7:30-9:30 a.m.
Monday 9:30-10:29 a.m.	Wednesday	Dec. 12	9:45-11:45 a.m.
Monday 10:30-11:29 a.m.	Monday	Dec. 10	9:45-11:45 a.m.
Monday 11:30-12:29 p.m.	Wednesday	Dec. 12	2:15-4:15 p.m.
Monday 12:30-1:29 p.m.	Thursday	Dec. 13	12:00-2:00 p.m.
Monday 1:30-2:29 p.m.	Tuesday	Dec. 11	12:00-2:00 p.m.
Monday 2:30-3:29 p.m.	Monday	Dec. 10	2:15-4:15 p.m.
Monday 3:30-4:29 p.m.	Wednesday	Dec. 12	12:00-2:00 p.m.

Final Exam Format

- The exam will cover: Chapter 1 to Chapter 6, and Sections 7.1-7.2
- Emphasis will be on Chapter 5, 6, and 7

- The exam will be open book and open notes.
- You can bring up to 5 pages of handwritten or typed notes plus your textbook.

Final Exam Format

- The exam will be out of 130 points
- You need 95 points to get an A on this exam
- It will be great if you can score more than 100 points.
 - but you can't roll over your extra points ⊗

Topics for the Final Exam

- K-maps for 2, 3, and 4 variables
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adding and subtracting
- Serial adder
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Counters (up, down, synchronous, asynchronous)
- Registers and Register Files

Topics for the Final Exam

- Synchronous Sequential Circuits
- FSMs
- Moore Machines
- Mealy Machines
- State diagrams, state tables, state-assigned tables
- State minimization
- Designing a counter
- Arbiter Circuits
- Reverse engineering a circuit
- ASM Charts
- Register Machines
- Bus structure and Simple Processors
- Something from Star Wars

Reading Material for Next Lecture

- "The Seven Secrets of Computer Power Revealed" by Daniel Dennett.
- This is Chapter 24 in his book "Intuition Pumps and Other Tools for Thinking", 2013

Elements used in ASM charts

State Box

[Figure 6.81a from the textbook]

State Box

- Indicated with a rectangle
- Equivalent to a node in the State diagram
- The name of the state is written outside the box
- Moore-type outputs are written inside the box
- Only the output that must be set to 1 is written (by default, if an output is not listed it is set to 0)

Decision Box

Decision Box

- Indicated with a diamond shape
- Used for a condition expression that must be tested
- The exit path is chosen based on the outcome of the test
- The condition is on one or more inputs to the FSM
- Shortcut notation: w means "is w equal to 1?"

Conditional Output Box

- Indicated with an oval shape
- Used for a Mealy-type output signals
- The outputs depend on the state variables and inputs
- The condition that determines when such outputs are generated is placed in a separate decision box

Some Examples

ASM chart

Reset

[Figure 6.3 from the textbook]

ASM chart

[Figure 6.23 from the textbook]

[Figure 6.83 from the textbook]

ASM chart

ASM Chart is different from a Flow Chart

- The ASM chart implicitly includes timing info
- It is assumed that the underlying FSM changes from one state to another on every active clock edge
- Flow charts don't make that assumption.

The general model for a sequential circuit

[Figure 6.85 from the textbook]

The general model for a sequential circuit

$M = (W, Z, S, \varphi, \lambda)$

- W, Z, and S are finite, nonempty sets of inputs, outputs, and states, respectively.
- φ is the state transition function, such that $S(t+1) = \varphi[W(t), S(t)]$.
- λ is the output function, such that $\lambda(t) = \lambda[S(t)]$ for the Moore model and $\lambda(t) = \lambda[W(t), S(t)]$ for the Mealy model.

Examples of Solved Problems

Example 6.12

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1; otherwise to 0.

State Diagram

[Figure 6.86 from the textbook]

State Table for the FSM

State Table for the FSM

Present	Next	Output	
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
С	\mathbf{C}	D	1
D	В	Ε	0
Ε	В	Ε	1

Present	Next	Output	
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
\mathbf{C}	\mathbf{C}	D	1
D	В	Ε	0
Ε	В	Ε	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	$y_{3}y_{2}y_{1}$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Е	100	001	100	1
				<u> </u>

 $z = y_3 + \overline{y}_1 y_2$

How can we derive this expression?

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Е	100	001	100	1
·	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

Truth Table for the Output z

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y 3	<i>Y</i> 2	<i>Y</i> 1	z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth Table for the Output z

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y 3	<i>Y</i> ₂	<i>Y</i> 1	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

Truth Table for the Output z

]	Present state $y_3y_2y_1$		Next	state				
				w = 0	w = 1	0	utp	out	
				$\begin{array}{c} y_3y_2y_1 \\ \end{array}$		$Y_3Y_2Y_1$	$Y_3Y_2Y_1 Y_3Y_2Y_1$		z
Α		000		001	011		0		
В		001		010	011		0		
\mathbf{C}		010		010	011		1		
D		011		001	100		0		
Ε		100		001	100		1		
	•	101		ddd	ddd	•	d		
		110		ddd	ddd		d		
		111		ddd	ddd		d		

			_
Y 3	<i>Y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

K-Map for the Output z

d

d

*y*₁

d

Z

d

d

d

							Z	<i>y</i> ₃ <i>y</i>	2	
							<i>Y</i> 1		00	01
			Next	state				0	0	1
	Present	t	110110	State	0	utpu	ıt	1	0	0
	state		w = 0	w = 1		utpt				
	$y_3y_2y_1$		$Y_3Y_2Y_1$	$Y_3Y_2Y_1$		z			Y 3	<i>y</i> ₂
Α	000		001	011		0			0	0
	001		010	011		0			0	0
В С	010		010	011		1			0	1
D	011		001	100		0			0	1
Е	100		001	100		1			1	0
	101		ddd	ddd	•	d		•	1	0
	110		ddd	ddd		d			1	1
	111		ddd	ddd		d			1	1

The Expression for the Output z

Z

			•	<i>y</i> ₃ <i>y</i> ₂
			<i>Y</i> 1	\rightarrow
Present	Next	state		0
state	w = 0	w = 1	Output	1
$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
000	001	011	0	
001	010	011	0	
010	010	011	1	
011	001	100	0	
100	001	100	1	
101	ddd	ddd	d	· [
110	ddd	ddd	d	
111	ddd	ddd	d	
	$\begin{array}{c} y_3 y_2 y_1 \\ 000 \\ 001 \\ 010 \\ 011 \\ 100 \\ \begin{array}{c} 101 \\ 110 \\ 110 \end{array}$	Present $w = 0$ $y_3y_2y_1$ $Y_3Y_2Y_1$ 000 001 001 010 001 010 010 010 011 001 100 001 101 ddd 110 ddd	$\begin{array}{c} {\rm state} \\ y_3y_2y_1 \\ \hline \\ & Y_3Y_2Y_1 \\ 000 \\ 001 \\ 011 \\ 001 \\ 010 \\ 010 \\ 011 \\ 011 \\ 011 \\ 001 \\ 100 \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Y 3	y ₂	<i>Y</i> 1	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

State-Assigned Table for the FSM

Truth Table for Y₃

		5	0	0	0	0	0	
			0	0	0	1	0	
			0	0	1	0	0	
Next	state		0	0	1	1	0	
w = 0	w = 1	Output	0	1	0	0	0	
$Y_3Y_2Y_1$	$Y_{3}Y_{2}Y_{1}$	z	0	1	0	1	d	
		0	0	1	1	0	d	
001 010	$\begin{array}{c} 011\\ 011 \end{array}$	0 0	0	1	1	1	d	
010	011	1	1	0	0	0	0	
001	100	0	1	0	0	1	0	
001	1 00	1	1	0	1	0	0	
ddd	<mark>d</mark> dd	d	1	0	1	1	1	
<mark>ddd</mark>	<mark>ddd</mark>	d	1	1	0	0	1	
ddd.	<mark>d</mark> dd	d	1	1	0	1	d	
			1	1	1	0	d	
			1	1	1	1	d	

W

Y3

 y_2

*y*₁

*Y*₃

 Y_2

 Y_1

А В С D Ε

Present

state

 $y_3 y_2 y_1$

000

001

010

011

100

101

110

111

Truth Table for Y₂

	Present	Next	Next state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	001	011	0	
В	001	010	0 <mark>11</mark>	0	
\mathbf{C}	010	010	0 <mark>11</mark>	1	
D	011	001	100	0	
Ε	100	001	100	1	
	101	ddd	d <mark>dd</mark>	d	
	110	ddd.	ddd	d	
	111	d <mark>dd</mark>	ddd	d	

W	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	d	d	
0	1	1	0	d	d	
0	1	1	1	d	d	
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	1	
1	0	1	1	1	0	
1	1	0	0	1	0	
1	1	0	1	d	d	
1	1	1	0	d	d	
1	1	1	1	d	d	

Truth Table for Y₁

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	dd <mark>d</mark>	ddd	d
	110	ddd	ddd	d
	111	dd <mark>d</mark>	ddd	d

w	y 3	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

	K-	Ma	ap	S	for Y	Зл	Υ,	, Y	1
T 7			•					•	•
<i>Y</i> ₂ <i>Y</i> ₁	<i>V₃</i> 00	01	11	10					
00	0	0	1	0					
01	0	d	d	0					
11	0	d	d	1	$\begin{array}{c} Y_2 \\ Y_2 \\ Y_2 \\ Y_1 \end{array}$	Va			
10	0	d	d	0	<i>Y</i> ₂ <i>Y</i> ₁	<i>Y</i> 3 00	01	11	10
-					00	0	0	0	1
					01	1	d	d	1
$Y_1 $	V_2				11	0	d	d	0
<i>Y</i> ₂ <i>Y</i> ₁ ^{<i>W</i>}	y_3	01	11	10	10	1	d	d	1
00	1	1	0	1					
01	0	d	d	1					
11	1	d	d	0					
10	0	d	d	1					

w	Y 3	y_2	<i>Y</i> 1	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

W	y 3	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Next State and Output Expressions

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$
$$Y_2 = y_1\overline{y}_2 + \overline{y}_1y_2 + w\overline{y}_2\overline{y}_3$$
$$Y_3 = wy_3 + wy_1y_2$$

$z = y_3 + \overline{y}_1 y_2$

	Present	Next	Next state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	001	011	0	
В	001	010	011	0	
\mathbf{C}	010	010	011	1	
D	011	001	100	0	
Е	100	001	100	1	

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Е	111	100	111	1
	<u> </u>			

B,C, D, E – when $y_3=1$

[Figure 6.89 from the textbook]

Present	Next	ext state Outp		
state	w = 0	w = 1	z	
А	В	D	0	
В	\mathbf{C}	D	0	
С	\mathbf{C}	D	1	
D	В	Ε	0	
Ε	В	Ε	1	

Present	Next state		Output
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
С	\mathbf{C}	D	1
D	В	Ε	0
Е	В	Ε	1

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Е	111	100	111	1
·	1			

B,C, D, E – when $y_3=1$

[Figure 6.89 from the textbook]

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

	Present	Next	state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	100	110	0	cut here
В	100	101	110	0	
\mathbf{C}	101	101	110	1	
D	110	100	111	0	
Е	111	100	111	1	

	Present	ent Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

Truth Table for the Output z

	F	Present state $y_3y_2y_1$		Next w = 0	state $w = 1$	0	utp	ut
	?			$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	1	z	
Α		000		100	110		0	
		001		ddd	ddd		d	
		010		ddd	ddd		d	
		011		ddd	ddd		d	
В		100		101	110		0	
С		101		101	110		1	
D		110		100	111		0	
Е		111		100	111		1	

Y 3	y ₂	<i>Y</i> 1	Z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Expression for the Output z

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d.
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

<i>y</i> ₃	<i>Y</i> ₂	<i>Y</i> 1	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Truth Table for Y₃

w	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1		
0	0	0	1	d		
0	0	1	0	d		
0	0	1	1	d		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	d		
1	0	1	0	d		
1	0	1	1	d		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	<mark>dd</mark> d	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
С	101	101	110	1
D F	110	100	111	0
Ε	111	100	111	1

Truth Table for Y₂

w	y 3	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	Y ₁
0	0	0	0	1	0	
0	0	0	1	d	d	
0	0	1	0	d	d	
0	0	1	1	d	d	
0	1	0	0	1	0	
0	1	0	1	1	0	
0	1	1	0	1	0	
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	0	1	d	d	
1	0	1	0	d	d	
1	0	1	1	d	d	
1	1	0	0	1	1	
1	1	0	1	1	1	
1	1	1	0	1	1	
1	1	1	1	1	1	

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	<mark>dd</mark> d	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	1 <mark>1</mark> 0	0
С	101	101	110	1
D	110	100	$111 \\ 111$	0
Ε	111	100	111	1

Truth Table for Y₁

	Present	Next state		Output
	state $y_3y_2y_1$	$w = 0$ $Y_3 Y_2 Y_1$	$w = 1$ $Y_3 Y_2 Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	<mark>ddd</mark>	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

w	y 3	<i>Y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

	K-	Ma	ap	S	for Y	3,	Υ,	, Y	1
	<i>Y3</i> 00		•					•	•
$y_2 y_1$	00	01	11	10					
00	1	1	1	1					
01	d	1	1	d					
11	d	1	1	d	$\begin{array}{c} Y_2 \\ Y_2 \\ Y_2 \\ Y_1 \end{array}$	Va			
10	d	1	1	d	<i>Y</i> ₂ <i>Y</i> ₁	<i>Y</i> 3 00	01	11	10
					00	0	0	1	1
					01	d	0	1	d
$\begin{array}{c} Y_1 \\ y_2 y_1 \end{array}^W$	V_2				11	d	0	1	d
$y_2 y_1$	<i>Y</i> 3	01	11	10	10	d	0	1	d
00	0	1	0	0					
01	d	1	0	d					
11	d	0	1	d					
10	d	0	1	d					

w	y 3	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	Y ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

w	<i>y</i> 3	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

1

d

d

d

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$
$$Y_2 = w$$
$$Y_3 = 1$$
$$z = y_1$$

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$
$$Y_2 = w$$
$$Y_3 = 1$$

 $z = y_1$

Example 6.13

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- But do this with two different FSMs. The first one detects two consecutive 1's. The second one detects two consecutive 0's.
- If either condition (i.e., output of FSM) is true then the output z should be set to 1; otherwise to 0.

Example 6.13

(Construct the first FSM)

FSM to detect two consecutive 1's (this was the first example in Chapter 6)

[Figure 6.3 from the textbook]

Present	Next state	Output
state	w = 0 $w = 1$	Z
А		
В		
С		

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	В	0
В	А	С	0
C	А	С	1

[Figure 6.4 from the textbook]

A Better State Encoding

Present state	Next state w = 0 w = 1		Output
A B	A A	B C	0 0
C D	A	C	1

Suppose we encoded our states another way:

 $A \sim 00$ $B \sim 01$ $C \sim 11$

A Better State Encoding

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	В	0
В	А	С	0
С	А	С	1

Present	Next		
state	w = 0	w = 1	Output
			Z

A Better State Encoding

Present	Next	Output	
state	w = 0	w = 1	Z
А	А	В	0
В	А	С	0
С	А	С	1

	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Z
A	00	00	01	0
В	01	00	11	0
С	11	00	11	1
	10	dd	dd	d

Let's Derive the Logic Expressions

	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Ζ
A	00	00	01	0
В	01	00	11	0
С	11	00	11	1
	10	dd	dd	d

Let's Derive the Logic Expressions

		Present	Next state		
		state	w = 0	w = 1	Output
Warning: This table does not		<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Z
enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.	A B C	00 01 11 10	00 00 00 dd	01 11 11 <i>dd</i>	0 0 1 d

		Present	Next	state	
		state	w = 0	w = 1	Output
Warning: This table does not		<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Z
enumerate $y_2 y_1$, in the	А	00	00	01	0
standard way, so be careful when filling	В	01	00	11	0
out the K-Map.	С	11	00	11	1
1		10	dd	dd	d

 $Y_1(w, y_2, y_1) = w$

 $Y_2(w, y_2, y_1) = wy_1$

 $z(y_2, y_1) = y_2$

[Figure 6.17 from the textbook]

Example 6.13

(Construct the second FSM)

FSM to detect two consecutive 0's

This is similar to the previous one. Just invert the w's and relabel the states to D,E,F.

Present	Next state	Output
state	w = 0 $w = 1$	z
D		
Е		
F		

Present	Next	Output	
state	w = 0	w = 1	Z
D	E	D	0
Е	F	D	0
F	F	D	1

FSM that detects a sequence of two zeros

Present	Ne xt state		Output
state	w = 0	w = 1	Zzeros
D	Е	D	0
Ε	\mathbf{F}	D	0
\mathbf{F}	\mathbf{F}	D	1

(a) State table

	Present	Next	state	
	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D	00	01	00	0
\mathbf{E}	01	11	00	0
\mathbf{F}	11	11	00	1
	10	dd	dd	d

FSM that detects a sequence of two zeros

Only these two columns are swapped relative to the first FSM. And the states have different names now.

(a) State table

Only these two columns are swapped relative to the first FSM.

	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 4 <i>Y</i> 3	$Y_4 Y_3$	$Y_4 Y_3$	Ζ
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	$Y_4 Y_3$	$Y_4 Y_3$	Ζ
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	$Y_4 Y_3$	$Y_4 Y_3$	Ζ
D	00	01	00	0
Е	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

 $Y_4(w, v_4, v_3) = \overline{w} v_3$ $Y_3(w, v_4, v_3) = \overline{w} z(v_4, v_3) = v_4$

Example 6.13

(Combine the two FSMs)

The Two FSMs

Detect two consecutive 1's

Detect two consecutive 0's

The Two Circuit Diagrams

Detect two consecutive 1's

Detect two consecutive 0's

The Combined Circuit Diagram

Detect two consecutive 1's or two consecutive 0's

Example 6.14

Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1; otherwise to 0.
- Implement this as a Mealy-type machine

State Diagram

Building the State Table

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
А	В	С	0	0
В	В	\mathbf{C}	1	0
С	В	\mathbf{C}	0	1

State Table

Present	Next	Next state		put z
state	w = 0	w = 1	w = 0	w = 1
А	В	С	0	0
В	В	\mathbf{C}	1	0
С	В	\mathbf{C}	0	1

Building the State-Assigned Table

Present	Next	state	Outp	put z
state	w = 0	w = 1	w = 0	w = 1
А	В	С	0	0
В	В	\mathbf{C}	1	0
С	В	\mathbf{C}	0	1

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

[Figure 6.93 from the textbook]

Present	Next state		Output	
state	w = 0	w = 1	w = 0	w = 1
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
00	01	11	0	0
01	01	11	1	0
11	01	11	0	1

	Present	Next	state	Out	put	
	state	w = 0	w = 1	w = 0	w = 1	
	y_2y_1	Y_2Y_1	Y_2Y_1	z	z	
Α	00	01	11	0	0	
В	01	01	11	1	0 ^{cut}	here
\mathbf{C}	11	01	11	0	1	

	Present	Next	state	Out	put
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
A	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

	Present	Next	state	Out	put
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
	10	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

Truth Table for Y₂, Y₁, and z

	Present	Next	state	Out	put
	state	w = 0	w = 1	w = 0	w = 1
	$y_2 y_1$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
	10	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

w	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₂	Y ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

w	<i>y</i> ₂	<i>y</i> 1	<i>Y</i> ₂	<i>Y</i> ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

$$Y_1 = 1$$

$$Y_2 = w$$

$$z = \overline{w} y_1 \overline{y_2} + w y_2$$

	Present	Next	Next state		put
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

$$Y_{1} = 1$$

$$Y_{2} = w$$

$$z = \overline{w} y_{1} \overline{y}_{2} + w y_{2}$$

 $z_2 = \overline{w} y_1 \overline{y}_2 + w y_2$

The Simplified Circuit Diagram

 $Y_2 = w$ z = $\overline{w} \overline{y}_2 + w y_2$

Example 6.15

Goal

Implement this state-assigned Table using JK flip-flops

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

	Present	- 		1	Flip-floj	p inputs				
	state		w =	: 0			w =	- 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

[Figure 6.94 from the textbook]

	Present				Flip-floj	o inputs				
	state	1	w =	- 0			w =	- 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
С	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Е	111	100	d0	d1	d1	111	d0	d0	<i>d</i> 0	1

$$Q(t) \rightarrow Q(t+1)$$
 J K

 $0 \rightarrow 0$
 $0 d$
 $0 \rightarrow 1$
 $1 d$
 $1 \rightarrow 0$
 $d 1$
 $1 \rightarrow 1$
 $d 0$

	Present			1	Flip-flo	p inputs				200 A A
	state	-	w =	- 0			w =	1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Е	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ \hline 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

Present		Flip-flop inputs									
state	1	w =	: 0			w =	: 1		Output		
$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z		
000	100	1d	0d	0d	110	1d	1d	0d	0		
100	101	d0	0d	1d	110	d0	1d	0d	0		
101	101	d0	0d	d0	110	d0	1d	d1	1		
110	100	d0	d1	0d	111	d0	d0	1d	0		
111	100	d0	d1	d1	111	d0	d0	<i>d</i> 0	1		

$$Q(t) \rightarrow Q(t+1)$$
 J K

 $0 \rightarrow 0$
 0 d

 $0 \rightarrow 1$
 1 d

 $1 \rightarrow 0$
 d 1

 $1 \rightarrow 1$
 d 0

	Present				Flip-floj	p inputs				
	state	-	w =	: 0			w =	= 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
2014/25	000	100	1d	0d	0d	110	1d	1d	0d	0
	100	101	d0	0d	1d	110	d0	1d	0d	0
	101	101	d0	0d	d0	110	d0	1d	d1	1
	110	100	d0	d1	0d	111	d0	d0	1d	0
	111	100	d0	d1	d1	111	d0	d0	d0	1

$$Q(t) \rightarrow Q(t+1)$$
 J K

 $0 \rightarrow 0$
 $0 d$
 $0 \rightarrow 1$
 $1 d$
 $1 \rightarrow 0$
 $d 1$
 $1 \rightarrow 1$
 $d 0$

	Present			4 	Flip-flo	p inputs				
	state	6	w =	: 0			w =	= 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
2000	000	100	1d	0d	0d	110	1d	1d	0d	0
	100	101	d0	0d	1d	110	d0	1d	0d	0
	101	101	d0	0d	d0	110	d0	1d	d1	1
	110	100	d0	d1	0d	111	d0	d0	1d	0
	111	100	d0	d1	d1	111	d0	d0	<i>d</i> 0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ \hline 0 \rightarrow 1 & 1 d \\ \hline 1 \rightarrow 0 & d 1 \\ \hline 1 \rightarrow 1 & d 0 \end{array}$$

	Present	- 		2 }	Flip-floj	o inputs				
	state		w =	- 0			w =	- 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	0 <mark>0</mark> 0	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Е	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

	Present	с. х.			Flip-floj	p inputs				
	state		w =	- 0			w =	- 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	1 <mark>00</mark>	101	d0	0d	1d	110	d0	1d	0d	0
С	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Е	111	100	d0	d1	d1	111	d0	d0	d0	1

$$Q(t) \rightarrow Q(t+1)$$
 J K

 $0 \rightarrow 0$
 $0 d$
 $0 \rightarrow 1$
 $1 d$
 $1 \rightarrow 0$
 $d 1$
 $1 \rightarrow 1$
 $d 0$

And so on...

The Expression for z

	Present		Flip-flop inputs										
	state	-	w =	: 0			w =	- 1		Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z			
1993	000	100	1d	0d	0d	110	1d	1d	0d	0			
	10 <mark>0</mark>	101	d0	0d	1d	110	d0	1d	0d	0			
1000	101	101	d0	0d	d0	110	d0	1d	d1	1			
	11 <mark>0</mark>	100	d0	d1	0d	111	d0	d0	1d	0			
	111	100	d0	d1	d1	111	d0	d0	d0	1			

A B C D E

z is equal to y₁

The Expression for J₃

Present				Flip-floj	p inputs				
state	1	w =	: 0			w =	- 1		Output
$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
000	100	1d	0d	0d	110	1d	1d	0d	0
100	101	d0	0d	1d	110	d0	1d	0d	0
101	101	d0	0d	d0	110	dO	1d	d1	1
110	100	d0	d1	0d	111	dO	d0	1d	0
111	100	d0	d1	d1	111	dO	d0	d0	1

A B C D E

J_3 is equal to 1

The Expression for K₃

	Present			4 	Flip-floj	p inputs				~ ~ ~ ~
	state		w =	: 0			w =	= 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
2.442	000	100	1d	0d	0d	110	1d	1d	0d	0
	100	101	d0	0d	1d	110	d0	1d	0d	0
	101	101	d0	0d	d0	110	a0	1d	d1	1
	110	100	d0	d1	0d	111	d0	d0	1d	0
	111	100	d <mark>0</mark>	d1	d1	111	d0	d0	d0	1

A B C D E

K_3 is equal to 0

The Expression for J₂

	$\begin{array}{c} \text{Present} \\ \text{state} \\ y_3 y_2 y_1 \\ \hline 000 \\ 100 \\ 101 \\ \end{array}$	Flip-flop inputs									
			w =	: 0			Output				
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
1	000	100	1d	0 d	0d	110	1d	1d	0d	0	
i.	100	101	d0	0 d	1d	110	d0	1d	0d	0	
	101	101	d0	0 d	d0	110	d0	1d	d1	1	
	110	100	d0	d1	0d	111	d0	d0	1d	0	
r I	111	100	d0	d1	d1	111	d0	dO	d0	1	

A B C D E

J_2 is equal to w

The Expression for K₂

	Present	Flip-flop inputs										
	state	1	w =	: 0			Output					
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z		
2	000	100	1d	0d	0d	110	1d	1d	0d	0		
3	100	101	d0	0d	1d	110	d0	1d	0d	0		
2	101	101	d0	0d	d0	110	d0	1d	d1	1		
)	110	100	d0	a1	0d	111	d0	d^{O}	1d	0		
2	111	100	d0	d^{1}	d1	111	d0	a <mark>0</mark>	<i>d</i> 0	1		

A B C D E

K_2 is equal to \overline{W}

The Expression for J_1

	$\begin{array}{c} \text{Present} \\ \text{state} \\ y_3 y_2 y_1 \\ \hline 000 \\ 100 \end{array}$	Flip-flop inputs									
			w =	: 0			Output				
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
1.11.1	000	100	1d	0d	0d	110	1d	1d	0d	0	
	10 <mark>0</mark>	101	d0	0d	1d	110	d0	1d	0d	0	
	10 <mark>1</mark>	101	d0	0d	d0	110	d0	1d	d1	1	
	110	100	d0	d1	0 d	111	d0	d0	1d	0	
	111	100	d0	d1	d1	111	d0	d0	d0	1	

A B C D E

 J_1 is equal to $w y_2 + \overline{w} y_3 \overline{y_2}$

The Expression for K₁

Present	Flip-flop inputs									
state		w =	= 0			Output				
$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
000	100	1d	0d	0d	110	1d	1d	0d	0	
100	101	d0	0d	1d	110	d0	1d	0d	0	
101	101	d0	0d	d 0	110	d0	1d	d1	1	
110	100	d0	d1	0d	111	d0	d0	$1\overline{d}$	0	
111	100	d0	d1	d_1	111	d0	d0	d0	1	
								Ы	1	

d

 K_1 is equal to $\overline{w} y_2 + w \overline{y_2} y_1$

All Logic Expressions

 $J_1 = wy_2 + \overline{w}y_3\overline{y}_2$ $K_1 = \overline{w}y_2 + wy_1\overline{y}_2$ $J_2 = w$ $K_2 = \overline{w}$ $J_3 = 1$ $K_{3} = 0$ $z = y_1$

Questions?

THE END