

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Review for the Final Exam

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- The FINAL exam is scheduled for
-Wednesday Dec 12 @ noon-2:00 PM
- It will be in this room.

Final Exam Format

- The exam will cover: Chapter 1 to Chapter 6, and Sections 7.1-7.2
- Emphasis will be on Chapter 5, 6, and 7
- The exam will be open book and open notes (you can bring up to 5 pages of handwritten/typed notes) plus your textbook.

Final Exam Format

- The exam will be out of 130 points
- You need 95 points to get an A
- It will be great if you can score more than 100 points.
- but you can't roll over your extra points $)^{2}$

Topics for the Final Exam

- K-maps for 2, 3, and 4 variables
- Venn Diagrams
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adding and subtracting
- Serial adder
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Counters (up, down, synchronous, asynchronous)
- Registers and Register Files

Topics for the Final Exam

- Synchronous Sequential Circuits
- FSMs
- Moore Machines
- Mealy Machines
- State diagrams, state tables, state-assigned tables
- State minimization
- Designing a counter
- Arbiter Circuits
- Reverse engineering a circuit
- ASM Charts
- Register Machines
- Bus structure and Simple Processors
- Assembly Language and Machine Language
- Something from Star Wars

How to Study for the Final Exam

- Form a study group
- Go over the slides for this class
- Go over the homeworks again
- Go over the problems at the end of Ch 5 \& 6
- Exercise
- Get some sleep

Administrative Stuff

- Please check your grades on Canvas
- Let me know if something is wrong or missing

Sample Problems

ASM Charts

Given an ASM chart draw the corresponding FSM

ASM Charts

Given an ASM chart draw the corresponding FSM

[Figure 6.82 from the textbook]

[Figure 6.3 from the textbook]

ASM Charts

Given an FSM draw the corresponding ASM Chart

ASM Charts

Given an FSM draw the corresponding ASM Chart

[Figure 6.23 from the textbook]
[Figure 6.83 from the textbook]

Circuit Implementation of FSMs Implement this state-assigned Table using JK flip-flips

Present state $y_{3} y_{2} y_{1}$	Next state		Output
	$w=0$	$w=1$	
A	000	$Y_{3} Y_{2} Y_{1}$	$Y_{3} Y_{2} Y_{1}$

Circuit Implementation of FSMs

 Implement this state-assigned Table using JK flip-flips$$
\begin{aligned}
& J_{1}=w y_{2}+\bar{w} y_{3} \bar{y}_{2} \\
& K_{1}=\bar{w} y_{2}+w y_{1} \bar{y}_{2} \\
& J_{2}=w \\
& K_{2}=\bar{w} \\
& J_{3}=1 \\
& K_{3}=0 \\
& z=y_{1}
\end{aligned}
$$

Circuit Implementation of FSMs

Implement this state-assigned Table using JK flip-flips

	Presentstate$y_{3} y_{2} y_{1}$	Flip-flop inputs								Output z
		$w=0$				$w=1$				
		$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	$Y_{3} Y_{2} Y_{1}$	$J_{3} K_{3}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
A	000	100	$1 d$	0d	0d	110	$1 d$	$1 d$	0d	0
B	100	101	$d 0$	0d	$1 d$	110	20	$1 d$	0d	0
C	101	101	$d 0$	0d	$d 0$	110	$d 0$	$1 d$	d1	1
D	110	100	$d 0$	$d 1$	0d	111	$d 0$	$d 0$	$1 d$	0
E	111	100	$d 0$	$d 1$	$d 1$	111	$d 0$	$d 0$	$d 0$	1

Excitation table with JK flip-flops
[Figure 6.94 from the textbook]

Register Machines:
 What does this program do?

How many balls are left in each register at the end of the program?

Register 1

Register 2

Register 3

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	3	4
3.	Inc	3	2	
4.	End			

Register Machines:

Move the contents of register 2 to register 3

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	3	4
3.	Inc	3	2	
4.	End			

Register Machines:
 What does this program do?

How many balls are left in each register at the end of the program?

Register 1

Register 2

Register 3

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	2	3
3.	Deb	1	4	6
4.	Inc	3	5	
5.	Inc	2	3	
6.	Deb	2	7	8
7.	Inc	1	6	
8.	End			

Register Machines:

Copy the contents of register 1 to register 3 using register 2 as a temporary storage

Register 1

Register 2
Register 3

STEP	INSTRUCTION	REGISTER	GO TO STEP	[BRANCH TO STEP]
1.	Deb	3	1	2
2.	Deb	2	2	3
3.	Deb	1	4	6
4.	Inc	3	5	
5.	Inc	2	3	
6.	Deb	2	7	8
7.	Inc	1	6	
8.	End			

What does this circuit do?

[Figure 6.75 from the textbook]

Approach

-Find the flip-flops
-Outputs of the flip-flops = present state variables
-Inputs of the flip-flops determine the next state variables
-Determine the logical expressions for the outputs
-Given this info it is easy to do the state-assigned table
-Next do the state table
-Finally, draw the state diagram.

Goal

- Given a circuit diagram for a synchronous sequential circuit, the goal is to figure out the FSM
- Figure out the present state variables, the next state variables, the state-assigned table, the state table, and finally the state diagram.
- In other words, the goal is to reverse engineer the circuit.

What does this circuit do?

[Figure 6.75 from the textbook]

Approach

-Find the flip-flops
-Outputs of the flip-flops = present state variables
-Inputs of the flip-flops determine the next state variables
-Determine the logical expressions for the outputs
-Given this info it is easy to do the state-assigned table
-Next do the state table
-Finally, draw the state diagram.

Where are the inputs?

[Figure 6.75 from the textbook]

Where are the inputs?

[Figure 6.75 from the textbook]

Where are the outputs?

[Figure 6.75 from the textbook]

Where are the outputs?

[Figure 6.75 from the textbook]

Where kind of machine is this? Moore or Mealy?

Moore: because the output does not depend directly on the primary input

Where are the memory elements?

Where are the memory elements?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the present-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

These are the next-state variables

What are their logic expressions?

What are their logic expressions?

$$
Y_{1}=w \bar{y}_{1}+w y_{2}
$$

Where is the output, again?

Where is the output, again?

What is its logic expression?

What is its logic expression?

This is what we have to work with now (we don't need the circuit anymore)

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
$\mathrm{Y}_{2} \mathrm{Y}_{1}$			
00			
01			
10			
11			

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	Output
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	Z
00			
01			
10			
11			

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00			0
00		0	
01			0
10			1
11			

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
0	z		
00			0
01			0
10			0
11			1

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	0	1	0
01	0	0	0
10	0	1	0
11	0	1	1

Let's derive the state-assigned table

$$
Y_{1}=w \bar{y}_{1}+w y_{2}
$$

$$
Y_{2}=w y_{1}+w y_{2}
$$

$z=y_{1} y_{2}$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	Output		
$\left.Y_{2}\right)_{1}$	$\left.Y_{2}\right)$	r_{1}	
00	0	1	0
01	0	0	0
10	0	1	0
11	0	1	1

Let's derive the state-assigned table

$$
\begin{aligned}
& Y_{1}=w \bar{y}_{1}+w y_{2} \\
& Y_{2}=w y_{1}+w y_{2} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
$\mathrm{y}_{2} \mathrm{y}_{1}$	Output		
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

We don't need the logic expressions anymore

$$
\begin{aligned}
Y_{1} & =w \bar{y}_{1}+w y_{2} \\
Y_{2} & =w y_{1}+w y_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	Output
$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$		
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

We don't need the logic expressions anymore

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
$\mathrm{y}_{2} \mathrm{y}_{1}$	Output		
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

Let's derive the state table

State table

Present state	Next State		
	$\mathrm{y}=0$	$\mathrm{w}=1$	Output
$2 \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

State table

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

Present state	Next state	Outputz	$\begin{gathered} \text { Present } \\ \text { state } \\ \mathrm{y}_{2} \mathrm{y}_{1} \end{gathered}$	Next	State	Output Z
	$w=0 \quad w=1$			$\mathrm{w}=0$	$\mathrm{w}=1$	
$\mathrm{A} \leftarrow$				$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
$B \leftarrow$			-00	00	01	0
			-0 1	00	10	0
			-10	00	11	0
			-11	00	11	1

State table
State-assigned table

Let's derive the state table

State table

Present state	Next State		Output
	$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{w}=0$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

Present state	Next state	Output Z	Present state $\mathrm{y}_{2} \mathrm{y}_{1}$	Next State		Output Z
	$w=0 \quad w=1$			$\mathrm{w}=0$	w = 1	
A	$\left(\begin{array}{l}\text { A } \\ A \\ A \\ A\end{array}\right) \leftarrow$			$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
B			00	00	01	0
C			01	-00	10	0
D			10	00	11	0
			11		11	1

State table
State-assigned table

Let's derive the state table

State table

Present state	Next State		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

Let's derive the state table

State table
State-assigned table

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	
B	A	C	
C	A	D	
D	A	D	

Present state	Next State		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State table
State-assigned table

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	
B	A	C	
C	A	D	
D	A	D	

State table

Present state	Next State		
	$\mathrm{y}=0$	$\mathrm{w}=1$	
$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

The output is the same in both tables

The two tables for the initial circuit

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

Present state	Next State		
	$\mathrm{y}=0$	$\mathrm{w}=1$	Output
$2 \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

We don't need the state-assigned table anymore

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

Present state	Next State		
	$\mathrm{w}=0$	$\mathrm{w}=1$	
$\mathrm{y}_{2} \mathrm{y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	$\mathrm{Y}_{2} \mathrm{Y}_{1}$	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

State-assigned table

We don't need the state-assigned table anymore

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

Let's Draw the State Diagram

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Let's Draw the State Diagram

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Because this is a Moore machine the output is tied to the state

Let's Draw the State Diagram

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

All transitions when the input w is equal to 1

Let's Draw the State Diagram

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Let's Draw the State Diagram

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Let's Draw the State Diagram

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

All transitions when the input w is equal to 0

We are done!

State diagram

Almost done. What does this FSM do?

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

Almost done. What does this FSM do?

It sets the output z to 1 when three consecutive 1's occur on the input w. In other words, it is a sequence detector for the input pattern 111.

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

Another Example (with JK flip-flops)

What does this circuit do?

[Figure 6.77 from the textbook]

Approach

-Find the flip-flops
-Outputs of the flip-flops = present state variables
-Inputs of the flip-flops determine the next state variables
-Determine the logical expressions for the outputs
-Given this info it is easy to do the state-assigned table
-Next do the state table
-Finally, draw the state diagram.

Where are the inputs and outputs?

[Figure 6.77 from the textbook]

Where are the inputs and outputs?

What kind of machine is this?

Where are the flip-flops?

Where are the flip-flops?

Where are the outputs of the flip-flops?

Where are the outputs of the flip-flops?

These are the next-state variables

Where are the inputs of the flip-flops?

Where are the inputs of the flip-flops?

What are their logic expressions?

What are their logic expressions?

What is the logic expression of the output?

What is the logic expression of the output?

This is what we have to work with now (we don't need the circuit anymore)

$$
\begin{aligned}
\mathrm{J}_{1} & =\mathrm{w} \\
\mathrm{~K}_{1} & =\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
\mathrm{~J}_{2} & =\mathrm{w} \mathrm{y}_{1} \\
\mathrm{~K}_{2} & =\overline{\mathrm{w}} \\
\mathrm{z} & =\mathrm{y}_{1} \mathrm{y}_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

Let's derive the excitation table

$$
\begin{aligned}
\mathrm{J}_{1} & =\mathrm{w} \\
\mathrm{~K}_{1} & =\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2}
\end{aligned}
$$

$$
J_{2}=w y_{1}
$$

$$
\mathrm{K}_{2}=\overline{\mathrm{w}}
$$

Presen state $y_{2} y_{1}$	Flip-flop inputs		Output z
	$w=0$	$w=1$	
	$\begin{array}{lll}J_{2} K_{2} & J_{1} K_{1}\end{array}$	$\begin{array}{lll}J_{2} K_{2} & J_{1} K_{1}\end{array}$	
00			0
01			0
10			0
11			1

$$
z=y_{1} y_{2}
$$

Let's derive the excitation table

$$
\begin{aligned}
\mathrm{J}_{1} & =\mathrm{w} \\
\mathrm{~K}_{1} & =\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2}
\end{aligned}
$$

$$
\mathrm{J}_{2}=\mathrm{w} \mathrm{y}_{1}
$$

$$
\mathrm{K}_{2}=\overline{\mathrm{w}}
$$

$\begin{aligned} & \text { Presen } \\ & \text { state } \\ & y_{2} y_{1} \end{aligned}$	Flip-flop inputs				Outputz
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00		01		11	0
01		01		11	0
10		01		10	0
11		01		10	1

$$
z=y_{1} y_{2}
$$

Let's derive the excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \begin{array}{l}
\mathrm{J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
\mathrm{~K}_{2}=\overline{\mathrm{w}}
\end{array} \\
& z=y_{1} y_{2}
\end{aligned}
$$

The excitation table

$$
\begin{aligned}
& \mathrm{J}_{1}=\mathrm{w} \\
& \mathrm{~K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2} \\
& \mathrm{~J}_{2}=\mathrm{w} \mathrm{y}_{1} \\
& \mathrm{~K}_{2}=\overline{\mathrm{w}} \\
& z=y_{1} y_{2}
\end{aligned}
$$

We don't need the logic expressions anymore

$$
\mathrm{J}_{1}=\mathrm{w}
$$

$$
\mathrm{K}_{1}=\overline{\mathrm{w}}+\overline{\mathrm{y}}_{2}
$$

$$
\mathrm{J}_{2}=\mathrm{w} \mathrm{y}_{1}
$$

$$
\mathrm{K}_{2}=\overline{\mathrm{w}}
$$

Present state	Flip-flop inputs				
	Ontput				
	$J_{2} K_{2}=$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

$$
z=y_{1} y_{2}
$$

We don't need the logic expressions anymore

$\begin{gathered} \text { Present } \\ \text { state } \\ y_{2} y_{1} \end{gathered}$	Flip-flop inputs				$\begin{gathered} \text { Output } \\ z \end{gathered}$
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

[Figure 6.78 from the textbook]

Let's derive the state table

Present state	Flip-flop inputs				
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	z
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

State table

Excitation table

Let's derive the state table

Present state	Next state	$\begin{aligned} & \text { Output } \\ & \text { z } \end{aligned}$	Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$\mathrm{w}=0 \quad \mathrm{w}=1$			$w=0$		$w=1$		
$\mathrm{A} \leftarrow$				$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
$B \leftarrow$			-00	01	01	00	11	0
C \leftarrow			- 01	01	01	10	11	0
D \leftarrow			- 10	01	01	00	10	0
			- 11	01	01	10	10	1

State table
Excitation table

This step is easy
(map 2-bit numbers to 4 letters)

Let's derive the state table

Present state	Next state	$\begin{aligned} & \text { Output } \\ & \text { z } \end{aligned}$	Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0 \quad w=1$			$w=0$		$w=1$		
A		0		$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
B		$0 \leftarrow$	00	01	01	00	14	- 0
C		0	01	01	01	10	11	- 0
D		1	10	01	01	00	10	- 0
			11	01	01	10	10	-1

State table
Excitation table

This step is easy too
(the outputs are the same in both tables)

Let's derive the state table

Present state	Next state	Outputz	Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	w = 0 w = 1			$w=0$		$w=1$		
A	?	0		$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
B		0	00	01	01	00	11	0
C		0	01	01	01	10	11	0
D		1	10	01	01	00	10	0
			11	01	01	10	10	1

State table

Excitation table

How should we do this?

JK Flip-Flop Refresher

[Figure 5.16a from the textbook]

JK Flip-Flop Refresher

J	K	$Q(t+1)$
0	0	$Q(t)$
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

(b) Truth table

(c) Graphical symbol
[Figure 5.16 from the textbook]

Let's derive the state table

Present state	Next state	Outputz	Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	w = 0 w = 1			$w=0$		$w=1$		
A	?	0		$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
B		0	00	01	01	00	11	0
C		0	01	01	01	10	11	0
D		1	10	01	01	00	10	0
			11	01	01	10	10	1

State table

Excitation table

How should we do this?

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0 \quad \mathrm{w}=1$	z	
A		0	
B		0	
C		0	
D		1	

$\begin{aligned} & \text { Present } \\ & \text { state } \\ & y_{2} y_{1} \end{aligned}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0 \quad \mathrm{w}=1$	z	
A		0	
B		0	
C		0	
D		1	

Present state	Flip-flop inputs				
	$w=0$		$w=1$		Output
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J K	$Q(t+1)$	J K	$Q(t+1)$
00	Q (t)	00	Q (t)
01	0	01	0
10	1	10	1
11	$\bar{Q}(t)$	11	$\bar{Q}(t)$

Let's derive the state table

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A		0
B		$?$	0
C			0
D			1

Present state	Flip-flop inputs				
	$w=0$		$w=1$		Output
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J	K	$Q(t+1)$		$J K$	$Q(t+1)$
0	0	$Q(t)$		0	0
0	1	0		0	1
1	0	1		1	0
1	1	$\bar{Q}(t)$		1	1

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0 \quad \mathrm{w}=1$	z	
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J K	$Q(t+1)$	J K	$Q(t+1)$
00	Q (t)	00	Q (t)
01	0	01	0
10	1	10	1
11	$\overline{\mathrm{Q}}(\mathrm{t})$	11	$\bar{Q}(\mathrm{t})$

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0 \quad \mathrm{w}=1$	z	
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

J	K	$Q(t+1)$			
			$J K$	$Q(t+1)$	
0	0	$Q(t)$		0	0
0	1	0		$0(t)$	
0	0	1	0		
1	0	1		1	0
1	1	$\bar{Q}(t)$		1	1
1	1	$\bar{Q}(t)$			

Let's derive the state table

Present state	Next state		Output z
	A	0	
B		0	
C		0	
D		1	

$\begin{aligned} & \text { Present } \\ & \text { state } \\ & y_{2} y_{1} \end{aligned}$	Flip-flop inputs				Output z
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	${ }_{2} J_{1} K_{1}$	
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
	01	01	10	10	1
J K	Q(t+1)	J K	$Q(t+1)$	
00	Q (t)		00	Q (t)	
01	0		01	0	
10	1			1	
11	$\overline{\mathrm{Q}}(\mathrm{t})$		11	$\bar{Q}(\mathrm{t})$	

Let's derive the state table

Present state	Next state		Output z
	A	0	
B		0	
C		0	
D		1	

$\begin{aligned} & \text { Present } \\ & \text { state } \\ & y_{2} y_{1} \end{aligned}$	Flip-flop inputs				$\begin{gathered} \text { Output } \\ z \end{gathered}$
	$w=0$		$w=1$		
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	
00		01	00	11	0
0	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1
J K	Q (t+1)	J K	$Q(t+1)$	
00	Q (t)		00	Q (t)	
01	0		01	0	
10	1				
11	$\overline{\mathrm{Q}}(\mathrm{t})$		11	$\overline{\mathrm{Q}}(\mathrm{t})$	$\overline{1}=0$

Let's derive the state table

The two tables for the initial circuit

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Present state	Flip-flop inputs				
	$w=0$		$w=1$		Output
	$J_{2} K_{2}$	$J_{1} K_{1}$	$J_{2} K_{2}$	$J_{1} K_{1}$	z
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	10	0
11	01	01	10	10	1

State table

Excitation table

The state diagram

State diagram

The state diagram

Thus, this FSM is identical to the one in the previous example, even though the circuit uses JK flip-flops.

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

Yet Another Example (with mixed flip-flops)

What does this circuit do?

[Figure 6.79 from the textbook]

Approach

-Find the flip-flops
-Outputs of the flip-flops = present state variables
-Inputs of the flip-flops determine the next state variables
-Determine the logical expressions for the outputs
-Given this info it is easy to do the state-assigned table
-Next do the state table
-Finally, draw the state diagram.

What are the logic expressions?

[Figure 6.79 from the textbook]

What are the logic expressions?

What are the logic expressions?

The Excitation Table

$$
\begin{aligned}
D_{1} & =w\left(\bar{y}_{1}+y_{2}\right) \\
T_{2} & =\bar{w} y_{2}+w y_{1} \bar{y}_{2} \\
z & =y_{1} y_{2}
\end{aligned}
$$

Present state	Flip-flop inputs		Output
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Excitation table

Let's derive the state table

Present state	Flip-flop inputs		
	$w=0$	$w=1$	 $T_{2} D_{1}$
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state		Outputz	Present state $y_{2} y_{1}$	Flip-flop inputs		Output z
	Next state			$w=0$	$w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
$\mathrm{A} \leftarrow$			00	00	01	0
$\mathrm{C} \leftarrow$			01	00	10	0
$\mathrm{D} \leftarrow$			10	10	01	0
			11	10	01	1

This step is easy
(map 2-bit numbers to 4 letters)

Let's derive the state table

Present state			Present state $y_{2} y_{1}$	Flip-flop inputs	Output Z
	Next state	Outputz		$w=0 \quad w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1} \quad T_{2} D_{1}$	
A					
B		0	00	00 01	- 0
C		0	01	0010	0
D		1	10	1001	0
			11	1001	1

This step is easy too
(the outputs are the same in both tables)

Let's derive the state table

Present state	Next state	Outputz	Present state $y_{2} y_{1}$	Flip-flop inputs		Output z
				$w=0$	$w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
A	?	0				
B		0	00	00	01	0
C		0	01	00	10	0
D		1	10	10	01	0
			11	10	01	1

What should we do here?

Let's derive the state table

Present state		$\begin{aligned} & \text { Output } \\ & \text { z } \end{aligned}$	Present state $y_{2} y_{1}$	Flip-flop inputs		Output Z
	Next state			$w=0$	$w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
A	?	0				
B		0	00	00	01	0
C		0	01	00	10	0
D		1	10	10	01	0
			11	10	01	1

What should we do here?
$\left.\begin{array}{c|cc|c}\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\ \hline 0 & \mathrm{Q}(t) & 0 & 0 \\ 1 & \mathrm{Q}(t) & & 1\end{array}\right] 1$

Let's derive the state table

Present state	Next state		Output z
		0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$\left.\begin{array}{c|cc|c}\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\ \hline 0 & \mathrm{Q}(t) & & 0 \\ 1 & \overline{\mathrm{Q}}(t) & & 1\end{array}\right] 1$

Let's derive the state table

Present state	Next state		Output z
		0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\
\hline 0 & \overline{\mathrm{Q}(t)} & & 0 \\
1 & \overline{\mathrm{Q}}(t) & & 1
\end{array}
$$

Let's derive the state table

Present state	Next state	
	Output	
$\mathrm{w}=0 \quad \mathrm{w}=1$		
A		0
B		0
C		0
D		1

Present state $y_{2} y_{1}$	Flip-flop inputs		Output z
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
010	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1
T	$Q(\lambda+1)$	D	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$	0	0
1	$\overline{\mathrm{Q}}(t)$	1	1

Let's derive the state table

Present state	Next state		Output z
		0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Present state	Next state		Output z
		0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		
	$w=0$	$w=1$	Output
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	0	0	01
01	00	0	
10	10	01	0
11	10	01	10

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0 \quad \mathrm{w}=1$	z	
A		0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Let's derive the state table

Let's derive the state table

Present state			Present state $y_{2} y_{1}$	Flip-flop inputs	Output Z
	Next state	Output z		$w=0 \quad w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1} \quad T_{2} D_{1}$	
A	A	0	00	0001	0
C		0	01	0010	0
D		1	10	$10-01$	0
			11	1001	1

What should we do here?

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\
\hline 0 & \mathrm{Q}(t) & & 0 \\
1 & \mathrm{Q}(t) & & 1
\end{array}
$$

Let's derive the state table

Present state	Next state		Output z
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$\left.\begin{array}{c|cc|c}\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\ \hline 0 & \mathrm{Q}(t) & & 0 \\ 1 & \overline{\mathrm{Q}}(t) & & 1\end{array}\right] 1$

Let's derive the state table

Present state	Next state		Output z
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

$$
\begin{array}{c|cc|c}
\mathrm{T} & \mathrm{Q}(t+1) & \mathrm{D} & \mathrm{Q}(t+1) \\
\hline 0 & \overline{\mathrm{Q}(t)} & & 0 \\
1 & \overline{\mathrm{Q}}(t) & & 1
\end{array}
$$

Let's derive the state table

Present state	Next state	
	Output	
$\mathrm{z}=0 \quad \mathrm{w}=1$		
A	A	0
B		0
C		0
D		1

Present state $y_{2} y_{1}$	Flip-flop inputs		$\begin{gathered} \text { Output } \\ z \end{gathered}$
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1
	$Q(t+1)$	D	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$	0	0
1	$\overline{\mathrm{Q}}(t)$	1	1

Let's derive the state table

Present state	Next state		Output z
A	A	0	
B		0	
C		0	
D		1	

Presen state $y_{2} y_{1}$	Flip-flop inputs		Output z
	$w=0$	$w=1$	
	$T_{2} D_{1}$	$T_{2} D_{1}$	
00	00	01	0
01	00	10	0
10	10	01	0
17	10	01	1
T	$Q(t+1)$	D	$\mathrm{Q}(t+1)$
0	1	0	0
1	$\overline{\mathrm{Q}}(t)$	1	1

Let's derive the state table

Present state	Next state		Output z
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T	$\mathrm{Q}(t+1)$		D
	$\mathrm{Q}(t+1)$		
0	1		0
1	$\overline{\mathrm{Q}}(t)$		1

Let's derive the state table

Present state	Next state		Output z
A	A	0	
B		0	
C		0	
D		1	

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T	$\mathrm{Q}(t+1)$		D
$\mathrm{Q}(t+1)$			
0	1		0
1	$\overline{\mathrm{Q}}(t)$		0
1	1		

Let's derive the state table

Present state	Next state	Output Z	Present state $y_{2} y_{1}$	Flip-flop inputs		Output Z
				$w=0$	$w=1$	
	$w=0 \quad w=1$			$T_{2} D_{1}$	$T_{2} D_{1}$	
A	A		00	00	01	0
C			01	00	10	0
D			10	10	01	0
Note that D = 11			11	10	01	1
				+1)	D	$\mathrm{Q}(t+1)$
			$\begin{gathered} U \\ 1 \end{gathered}$	¢ $\overline{\mathrm{Q}}(t)$	0 1	$\begin{gathered} 0 \\ 1 \end{gathered}$

Let's derive the state table

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

T	$\mathrm{Q}(t+1)$	D	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$	0	0
1	$\overline{\mathrm{Q}}(t)$		1

The two tables for the initial circuit

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

Present state $y_{2} y_{1}$	Flip-flop inputs		Output
	$w=0$	$w=1$	
z	$T_{2} D_{1}$		
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Excitation table
State table

The state diagram

State diagram

The state diagram

Thus, this FSM is identical to the ones in the previous examples, even though the circuit uses JK flip-flops.

Present state	Next state		Output
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	A	B	0
B	A	C	0
C	A	D	0
D	A	D	1

State table

State diagram

State Minimization

State Table for This Example

Present state	Next state		Output
	$w=0$	$w=1$	
A	B	C	1
B	D	F	1
C	F	E	0
D	B	G	1
E	F	C	0
F	E	D	0
G	F	G	0

State Diagram

(just the states)

Present	Next state		Output
	$w=0$	$w=1$	
A	B	C	1
B	D	F	1
C	F	E	0
D	B	G	1
E	F	C	0
F	E	D	0
G	F	G	0

State Diagram

State Diagram

Outputs

Partition \#1

(All states in the same partition)

Partition \#1

 (ABCDEFG)

Partition \#2

(based on outputs)

Partition \#2 (ABD)(CEFG)

Partition \#3.1

(Examine the 0-successors of ABD)

Partition \#3.1

(Examine the 1-successors of ABD)

Partition \#3.2

(Examine the 0-successors of CEFG)

Partition \#3.2

(Examine the 1-successors of CEFG)

Partition \#3.2

(Examine the 1-successors of CEFG)

Partition \#3
 (ABD)(CEG)(F)

Partition \#3
 (ABD)(CEG)(F)

Partition \#4.1

(Examine the 0-successors of ABD)

Partition \#4.1

(Examine the 1-successors of ABD)

Partition \#4.1

(Examine the 1-successors of ABD)
This needs to be in a new block

B

Partition \#4 (AD)(B)(CEG)(F)

Partition \#4 (AD)(B)(CEG)(F)

Partition \#5.1

(Examine the 0 -successors of AD)

Partition \#5.1

(Examine the 1-successors of AD)

Partition \#5.2

(Examine the $\mathbf{0}$-successors of B)

Partition \#5.2

(Examine the 1-successors of B)

Partition \#5.3

(Examine the 0 -successors of CEG)

Partition \#5.3

(Examine the 1-successors of CEG)

Partition \#5.4

(Examine the 0 -successors of F)

Partition \#5.4

(Examine the 1-successors of F)

Partition \#5 (AD)(B)(CEG)(F)

Partition \#4 (AD)(B)(CEG)(F)

Partition \#5

(This is the same as \#4 so we can stop here)

Minimized state table

Present state	Nextstate		Output Z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	B	1	
B	A	F	1
C	F	C	0
F	C	A	0

Multiplexers

4-1 Multiplexer (Definition)

- Has four inputs: $\mathbf{w}_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and $\mathbf{s}_{\mathbf{0}}$
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

Graphical Symbol and Truth Table

(a) Graphic symbol
(b) Truth table
[Figure 4.2a-b from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Implementation of a logic function

(a) Modified truth table

(b) Circuit

Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{lll|l}W_{1} & W_{2} & W_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} W_{3}$

Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{lll|l}W_{1} & W_{2} & W_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} W_{3}$
(a) Truth table (b) Circuit

Gated D Latch

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Edge-Triggered D Flip-Flops

Master-Slave D Flip-Flop

[Figure 5.9a from the textbook]

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Constructing a D Flip-Flop

Constructing a D Flip-Flop

Constructing a D Flip-Flop (with one less NOT gate)

Constructing a D Flip-Flop (with one less NOT gate)

T Flip-Flop

T Flip-Flop

[Figure 5.15a from the textbook]

T Flip-Flop

[Figure 5.15a from the textbook]

T Flip-Flop

What is this?
[Figure 5.15a from the textbook]

What is this?

What is this?

T Flip-Flop

What is this?

T Flip-Flop

JK Flip-Flop

JK Flip-Flop

[Figure 5.16a from the textbook]

JK Flip-Flop

(a) Circuit

J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$\mathrm{Q}(\mathrm{t})$

(b) Truth table

(c) Graphical symbol
[Figure 5.16 from the textbook]

JK Flip-Flop (How it Works)

A versatile circuit that can be used both as a SR flip-flop and as a T flip flop

If $\mathrm{J}=\mathbf{0}$ and $\mathrm{S}=\mathbf{0}$ it stays in the same state

Just like SR It can be set and reset $J=S$ and $K=R$

If $\mathrm{J}=\mathrm{K}=1$ then it behaves as a T flip-flop

Registers

Register (Definition)

An n-bit structure consisting of flip-flops

A simple shift register

(a) Circuit

	In	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{4}=$ Out
t_{0}	1	0	0	0	0
t_{1}	0	1	0	0	0
t_{2}	1	0	1	0	0
t_{3}	1	1	0	1	0
t_{4}	1	1	1	0	1
t_{5}	0	1	1	1	0
t_{6}	0	0	1	1	1
t_{7}	0	0	0	1	1

(b) A sample sequence

Parallel-access shift register

[Figure 5.18 from the textbook]

Counters

A three-bit up-counter

[Figure 5.19 from the textbook]

A three-bit up-counter

(a) Circuit

[Figure 5.19 from the textbook]

A three-bit down-counter

[Figure 5.20 from the textbook]

A three-bit down-counter

(a) Circuit

(b) Timing diagram
[Figure 5.20 from the textbook]

Synchronous Counters

A four-bit synchronous up-counter

Synchronous Counter with D Flip-Flops

A four-bit counter with D flip-flops

[Figure 5.23 from the textbook]

Counters with Parallel Load

A counter with parallel-load capability

[Figure 5.24 from the textbook]

A shift register with parallel load and enable control inputs

[Figure 5.59 from the textbook]

What does this circuit do?

[Figure 5.25a from the textbook]

Designing The Control Circuit

A Simple Processor

Bus

[Figure 7.9 from the textbook]

The function register and decoders

Function
[Figure 7.11 from the textbook]

A part of the control circuit for the processor

[Figure 7.10 from the textbook]

Control signals asserted in each time step

	T_{1}	T_{2}	T3
(Load): I_{0}	$\begin{aligned} & \text { Extern } \\ & R_{\text {in }}=X \\ & \text { Done } \end{aligned}$		
(Move): I_{1}	$\begin{aligned} & R_{\text {in }}=X \\ & R_{\text {out }}=Y \\ & \text { Done } \end{aligned}$		
(Add): I_{2}	$\begin{aligned} & R_{\text {out }}=X \\ & A_{\text {in }} \end{aligned}$	$\begin{aligned} & R_{\text {out }}=Y \\ & G_{\text {in }} \\ & \text { AddSub }=0 \end{aligned}$	$\begin{aligned} & \mathrm{G}_{\text {out }} \\ & \mathrm{R}_{\text {in }}=\mathrm{X} \\ & \text { Done } \end{aligned}$
(Sub): I_{3}	$\begin{aligned} & R_{\text {out }}=X \\ & A_{\text {in }} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\text {out }}=\mathrm{Y} \\ & \mathrm{G}_{\text {in }} \\ & \text { AddSub }=1 \end{aligned}$	$\begin{aligned} & \mathrm{G}_{\text {out }} \\ & \mathrm{R}_{\text {in }}=\mathrm{X} \\ & \text { Done } \end{aligned}$

[Table 7.2 from the textbook]

Operations performed by this processor

Operation	Function Performed
Load Rx, Data	Rx ¢ Data
Move Rx, Ry	$\mathrm{Rx} \leqslant$ [Ry]
Add Rx, Ry	$\mathrm{Rx} \leftarrow[\mathrm{Rx}]+[\mathrm{Ry}]$
Sub Rx, Ry	$\mathrm{Rx} \leftarrow[\mathrm{Rx}]-[\mathrm{Ry}]$

Operations performed by this processor

Operation	Function Performed
Load Rx, Data	Rx ¢ Data
Move Rx, Ry	$\mathrm{Rx} \in[\mathrm{Ry}]$
Add Rx, Ry	$\mathrm{Rx} \leqslant[\mathrm{Rx}]+[\mathrm{Ry}]$
Sub Rx, Ry	$\mathrm{Rx} \leftarrow[\mathrm{Rx}]$ - [Ry]

Where Rx and Ry can be one of four possible options: R0, R1, R2, and R3

Operations performed by this processor

$\boldsymbol{f}_{\boldsymbol{I}}$	$\boldsymbol{f}_{\boldsymbol{t}}$	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

$\boldsymbol{R} \boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{R} \boldsymbol{x}_{\boldsymbol{\theta}}$	Register
0	0	R 0
0	1	R 1
1	0	R 2
1	1	R 3

$\boldsymbol{R} \boldsymbol{y}_{1}$	$\boldsymbol{R} \boldsymbol{y}_{\boldsymbol{t}}$	Register
0	0	R 0
0	1	R 1
1	0	R 2
1	1	R 3

Operations performed by this processor

f_{1}	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

$R x_{1}$	$R x_{0}$	Register
0	0	$R 0$
0	1	$R 1$
1	0	$R 2$
1	1	$R 3$

$R y_{1}$	$R y_{0}$	Register
0	0	R 0
0	1	R 1
1	0	R 2
1	1	R 3

Operations performed by this processor

f_{1}	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

$R x_{1}$	$R x_{0}$	Register
0	0	R 0
0	1	R 1
1	0	R 2
1	1	R 3

$R y_{1}$	$R y_{0}$	Register
0	0	$R 0$
0	1	$R 1$
1	0	$R 2$
1	1	R 3

Operations performed by this processor

f_{1}	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

$R x_{1}$	$R x_{0}$	Register
0	0	$R 0$
0	1	$R 1$
1	0	$R 2$
1	1	$R 3$

$R y_{1}$	$R y_{0}$	Register
0	0	$R 0$
0	1	$R 1$
1	0	$R 2$
1	1	$R 3$

Operations performed by this processor

f_{1}	f_{0}	Function
0	0	Load
0	1	Move
1	0	Add
1	1	Sub

$R x_{1}$	$R x_{0}$	Register
0	0	$R 0$
0	1	R 1
1	0	R 2
1	1	R 3

$R y_{1}$	$R y_{0}$	Register
0	0	R 0
0	1	R 1
1	0	R 2
1	1	R 3

Similar Encoding is Used by Modern Chips

MIPS32 Add Immediate Instruction

$001000 \quad 0000100010 \quad 0000000101011110$
 OP Code Addr 1 Addr 2 Immediate value

Equivalent mnemonic: addi $\$ 1$ 1, $\$ 12,350$

Sample Assembly Language Program For This Processor

Move R3, R0
Add R1, R3
Sub R0, R2
Load R2, Data

Machine Language vs Assembly Language

Machine Language	Assembly Language		Meaning/Interpretation	
011100	Move R3, R0	R3 $\leftarrow[R 0]$		
100111	Add R1, R3	R1 $4[R 1]+[R 3]$		
110010	Sub R0, R2	R0 $4[R 0]-[R 2]$		
001000	Load R2, Data	R2 4 Data		

Machine Language vs Assembly Language

Machine Language	Assemb	Language	Meaning / Interpretation
011100	Move	R3, R0	R3 \leftarrow [R0]
100111	Add	R1, R3	R1 $\leftarrow[R 1]+[R 3]$
110010	Sub	R0, R2	$\mathrm{R} 0 \leqslant$ [R0] - [R2]
001000	Load	R2, Data	R2 \leftarrow Data

Machine Language vs Assembly Language

Machine Language	Assembly Language	Meaning / Interpretation
011100	Move R3, R0	R3 \leqslant [R0]
100111	Add R1, R3	R1 ¢ [R1] + [R3]
110010	Sub R0, R2	R0 ¢ [R0] - [R2]
001000	Load R2, Data	R2 ¢ Data

For short, each line
can be expresses as a
hexadecimal number

Machine Language vs Assembly Language

Machine Language	Assembly Language		Meaning/Interpretation	
1C	Move R3, R0	R3 $\leftarrow[R 0]$		
27	Add R1, R3	R1 $4[R 1]+[R 3]$		
32	Sub R0, R2	R0 $4[R 0]-[R 2]$		
08	Load R2, Data	R2 4 Data		

Questions?

THE END

