Karnaugh Maps
 Assigned: Week 5 Due Date: Sep. 30, 2019

P1 (15 points): Given the two functions $F=\bar{b} \bar{c} d$ and $G=\bar{a} b c+a b \bar{d}+\bar{b} \bar{c} d$: a) Create a minimal cost circuit that implements both F and G using only NOT, AND, and OR gates. Show that the minimal cost circuit has a cost of 24 .
b) Implement the circuit that you made in part a using only (a minimal number of) NAND gates. Your circuit should only use 9 NAND gates.

P2 (10 points): Derive the simplest SOP expressions for the given shorthand shorthand expressions.
a) $F_{1}(X, Y, Z)=\sum m(0,1,3)+D(2,5)$
b) $F_{2}(W, X, Y, Z)=\sum m(3,7)+D(0,1,2,4,5,6,11,15)$
c) $F_{3}(W, X, Y, Z)=\sum m(1,2,4,6,9,11,12,14)+D(0,3,5,7,8,10,13,15)$

P3 (10 points): Derive the simplest POS expressions for the given shorthand POS expressions.
a) $G_{1}(x, y, z)=M_{4}+D(0,2,3,5,6)$
b) $G_{2}(w, x, y, z)=\prod M(7,9)+D(1,3,5,6,8,13)$
c) $G_{3}(w, x, y, z)=\prod M(1,2,3,5,10,12,13,14)+D(0,4,6,7,8,9,11,15)$

P4 (15 points): Given the function $P(a, b, c, d)=\sum m(2,8,11,13)+$ D(1,4,5,6,7,10,14,15):
a) Derive a simplest SOP expression for P.
b) Derive a simplest POS expression for P.
c) Draw a circuit which implements P but uses only NAND gates.

P5 (10 points): Implement the function $Q(A, B, C)=m_{1}+m_{6}+D(0,3)$ using only the following: one OR gate, two AND gates, and two NOT gates.

P6 (20 points): Implement the functions $F(w, x, y, z)=$ $\sum m(2,4,5,6,7,10,14,15)$ and $G(w, x, y, z)=\sum m(0,1,2,5,6,9,10,13,14)$ using only AND, OR, and NOT gates. Your solution should have a cost less than 33.

P7 (20 points): A given circuit receives a four-bit number B ($b_{3}, b_{2}, b_{1}, b_{0}$) and produces two outputs: output T will be 1 if B is a multiple of 2 or a multiple of 3 , whereas output C will be 1 if B is a composite number (4,6 , 8,9 , etc.) Recall that a composite number is a positive integer that has at least one multiple other than 1 and itself. Also, 0 is not a positive integer! I: Draw the truth table for C and T .
II: Show that C and T can be implemented using 5 OR gates and 2 AND gates. Assume that the complemented inputs are available; that is, you do not need NOT gates to produce $\bar{b}_{3}, \bar{b}_{2}, \bar{b}_{1}, \bar{b}_{0}$ since these are also usable as external inputs to your circuit.

