Cpr E 281 HW06 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

P1 (10 points): Write -14 in the following binary number formats or state why it is not possible to write it in that format.

A: 8-bit Unsigned binary.

B: 8-bit Sign and magnitude.

C: 8-bit One's complement.

D: 8-bit Two's complement.

E: 32-bit IEEE 754 Floating Point.

P2 (8 points): For the grid below, shade the boxes for each number in the column that cannot be represented with only 3-bits under the format for that particular row.

	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
Unsigned																	
Sign & Magnitude																	
1's Complement																	
2's Complement																	

P3 (12 points): Given the following numbers in 6-bit 2's complement, find the negative of the number; that is, given each number as X, find Y such that X+Y=0.

A: 000100	B: 111111
C: 011001	D: 110110
E: 001100	F: 000000

P4 (12 points): Perform the following operations on the given 2's complement numbers and indicate if overflow exists for each operation.

A: 10010 + 01001	B: 01111 - 11111
C: 10010 + 10001	D: 01000 - 11000
E: 11011 + 00101	F: 01011 - 01101

P5 (16 points): Let A be a three-bit unsigned number. Use a seven-bit adder (and NOT gates, as necessary) to design a circuit that calculates the following operations. Note that the output may be assumed as unsigned, unless it is possible for the operation to produce a negative answer, in which case, the output must be correct in 2's complement:

W = 3A + 1 X = 2A - 17 Y = 40A + 6Z = 32 - 4A

P6 (18 points): In the circuits below, find the algebraic expression for B(X) (B in terms of X) and X(A) (the expression for X in terms of A). Overflow is ignored, but all results that would produce overflow should not be accepted as an allowed value.

I: Here, A is a 5-bit unsigned integer, X is a 7-bit unsigned integer, and B is a 7-bit number in 2's complement.

II: A and X are both 7-bit 2's complement integers, but B is an 8-bit 2's complement integer.

Cpr E 281 HW06 ELECTRICAL AND COMPUTER ENGINEERING	Representation and Arithmetic
	Assigned: Week 7
IOWA STATE UNIVERSITY	Due Date: Oct. 14, 2019

III: A is a 3-bit unsigned integer, X is an unsigned 7-bit integer, and B is an 8-bit unsigned number. Hint: identify the role of B_7 in the circuit.

P7 (12 points): Convert the following numbers to IEEE 754 Single-Precision Floating Point binary format:

A: -8.125 B: 239 C: 19/512

P8 (12 points): Convert the following numbers from IEEE 754 Single-Precision Floating Point format to decimal. Note that each number is given in hexadecimal. You may leave the result as a fraction.

A: BF000000₁₆ B: 42C80000₁₆ C: BD600000₁₆