Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 14, 2019

P1 (10 points): Write -14 in the following binary number formats or state why it is not possible to write it in that format.
A: 8-bit Unsigned binary.
B: 8-bit Sign and magnitude.
C: 8-bit One's complement.
D: 8-bit Two's complement.
E: 32-bit IEEE 754 Floating Point.
P2 (8 points): For the grid below, shade the boxes for each number in the column that cannot be represented with only 3 -bits under the format for that particular row.

	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
Unsigned																	
Sign \& Magnitude																	
1's Complement																	
2's Complement																	

P3 (12 points): Given the following numbers in 6-bit 2's complement, find the negative of the number; that is, given each number as X , find Y such that $\mathrm{X}+\mathrm{Y}=0$.
A: 000100
B: 111111
C: 011001
D: 110110
E: 001100
F: 000000

P4 (12 points): Perform the following operations on the given 2's complement numbers and indicate if overflow exists for each operation.
A: $10010+01001$
B: 01111-11111
C: $10010+10001$
D: 01000-11000
E: $11011+00101$
F: 01011-01101

P5 (16 points): Let A be a three-bit unsigned number. Use a seven-bit adder (and NOT gates, as necessary) to design a circuit that calculates the following operations. Note that the output may be assumed as unsigned, unless it is possible for the operation to produce a negative answer, in which case, the output must be correct in 2's complement:
$\mathrm{W}=3 \mathrm{~A}+1$
$\mathrm{X}=2 \mathrm{~A}-17$
$\mathrm{Y}=40 \mathrm{~A}+6$
$Z=32-4 A$

Representation and Arithmetic
Assigned: Week 7
Due Date: Oct. 14, 2019

P6 (18 points): In the circuits below, find the algebraic expression for $\mathbf{B}(\mathbf{X})$ (B in terms of X) and $\mathbf{X}(\mathbf{A})$ (the expression for X in terms of A). Overflow is ignored, but all results that would produce overflow should not be accepted as an allowed value.
I: Here, A is a 5 -bit unsigned integer, X is a 7 -bit unsigned integer, and B is a 7 -bit number in 2 's complement.

${ }_{6} \mathrm{BBBBBBB}_{4}^{4}$
II: A and X are both 7-bit 2's complement integers, but B is an 8-bit 2's complement integer.
АॄААААААААА 1111000

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 14, 2019

III: A is a 3-bit unsigned integer, X is an unsigned 7-bit integer, and B is an 8 -bit unsigned number. Hint: identify the role of B_{7} in the circuit.

P7 (12 points): Convert the following numbers to IEEE 754 SinglePrecision Floating Point binary format:
A: -8.125
B: 239
C: $19 / 512$

P8 (12 points): Convert the following numbers from IEEE 754 SinglePrecision Floating Point format to decimal. Note that each number is given in hexadecimal. You may leave the result as a fraction.

A: BF000000 ${ }_{16}$
B: $42 \mathrm{C} 80000_{16}$
C: BD600000 ${ }_{16}$

