Representation and Arithmetic
 Assigned: Week 9
 Due Date: Oct. 28, 2019

P1 (15 points): Given a 3-bit input A, 1-bit input P, 1-bit input Q, a 6-bit adder, some 2-to-1 MUXes, some NOT gates, and some XOR gates:
A : Design a circuit that produces a 6 -bit integer B such that $B=3+A$ if $P=0$ and produces $\mathrm{B}=5-\mathrm{A}$ if $\mathrm{P}=1$.
B : Design a circuit that produces a 6 -bit integer C such that $\mathrm{C}=3 \mathrm{~A}$ if $\mathrm{P}=0$ and produces $\mathrm{C}=5 \mathrm{~A}+1$ if $\mathrm{P}=1$.
C: Design a circuit that outputs 6-bit integer D such that $D=B$ if $Q=0$ and $\mathrm{D}=\mathrm{C}$ if $\mathrm{Q}=1$.

P2 (20 points): Fill in the timing diagrams below:
A: For a 4-to-2 priority encoder.

B: For a 4-to-2 binary encoder.

C: Which encoder's inputs are contrary to its input assumptions? Why?

Representation and Arithmetic

Assigned: Week 9
Due Date: Oct. 28, 2019

P3 (10 points): Consider the SR Latch shown below.

A: Complete the characteristic table.

G	S	R	Q	P
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

B: Complete the timing diagram shown below for outputs Q and P .

Representation and Arithmetic
 Assigned: Week 9
 Due Date: Oct. 28, 2019

P4 (10 points): Answer the following questions based on the circuit shown below.

A: The latch that appears (twice) in the above circuit is a D Latch. Show the characteristic table for a D Latch.
B: Fill in the timing diagram for the values shown above.

P5 (10 points): Show how a D Flip-Flop (DFF) can be made using a T FlipFlop (TFF). Your circuit must contain all of the functionality of a DFF (PRESET and CLEAR implementations are not necessary), but must use only one TFF and one 2-1 MUX.

P6 (15 points): We want to create an LM-latch with the characteristic table shown below:

L	M	Q	P
0	0	0	1
0	1	No change	No change
1	0	No change	No change
1	1	1	0

A: Show the characteristic table for the SR Latch shown below.

S	R	Q	P
0	0		
0	1		
1	0		
1	1		

Representation and Arithmetic
 Assigned: Week 9
 Due Date: Oct. 28, 2019

B: For each input combination to the LM-latch characteristic table shown above, write the values of S and R that will produce the output combinations. Then derive expressions for S and R in terms of L and M. C: Draw the completed circuit for the LM-latch with the characteristic table based on the expressions derived in part B.

P7 (20 points): Answer the following questions about the Negative-EdgeTriggered Master-Slave DFF with PRESET_N and CLEAR_N connections, as shown in Figure 5.12 from the book. Suppose that $\mathrm{D}=1$ and CLK=0. Answer the following questions about Q.
A: Ignoring PRESET_N and CLEAR_N (assume that they are not connected), what effect does pulsing the clock have on Q in this circuit?
B: What effect does pulsing PRESET_N have on this circuit?
C: What effect does pulsing CLEAR_N have on this circuit?
D: What will be the value of Q if PRESET_N=0 and CLEAR_N=1?
E: What will be the value of Q if PRESET_N=0 and CLEAR_N=0?
F: What will be the value of Q if the clock is pulsed while PRESET_N=0?
G: What will be the value of Q if the clock is pulsed while CLEAR_N=0?
H : What will be the value of Q if the clock is pulsed while CLEAR_N=1 and PRESET_N=1?

