

**P1 (15 points):** Given a 3-bit input A, 1-bit input P, 1-bit input Q, a 6-bit adder, some 2-to-1 MUXes, some NOT gates, and some XOR gates:

A: Design a circuit that produces a 6-bit integer B such that B=3+A if P=0 and produces B=5-A if P=1.

B: Design a circuit that produces a 6-bit integer C such that C=3A if P=0 and produces C=5A+1 if P=1.

C: Design a circuit that outputs 6-bit integer D such that D=B if Q=0 and D=C if Q=1.

P2 (20 points): Fill in the timing diagrams below:

|                                           |      |     | _    | _   |      | -    |      | _    |
|-------------------------------------------|------|-----|------|-----|------|------|------|------|
| WO                                        |      |     |      |     |      |      |      |      |
| <b>W1</b>                                 |      |     |      |     |      |      |      |      |
| <b>W2</b>                                 |      |     |      |     |      |      |      |      |
| <b>W</b> 3                                |      |     |      |     |      |      |      |      |
| Y0                                        |      |     |      |     |      |      |      |      |
| <b>Y1</b>                                 |      |     |      |     |      |      |      |      |
| z                                         |      |     |      |     |      |      |      |      |
|                                           |      |     |      |     |      |      |      |      |
| B: Fo                                     | or a | 4-t | o-2  | bir | nary | y en | icod | ler. |
| B: Fo                                     | or a | 4-t | :o-2 | bir | nary | y en | icod | ler. |
| B: Fo<br>WO<br>W1                         | or a | 4-t | :o-2 | bir | nary | y en | icod | ler. |
| B: Fo<br>W0<br>W1<br>W2                   | or a | 4-t | :o-2 | bir | nary | y en |      | ler. |
| B: Fo<br>W0<br>W1<br>W2<br>W3             | or a | 4-t | .o-2 | bir | nary | y en |      | ler. |
| B: Fo<br>W0<br>W1<br>W2<br>W3<br>Y0       | or a | 4-t | :o-2 | bir |      | y er |      | ler. |
| B: Fc<br>W0<br>W1<br>W2<br>W3<br>Y0<br>Y1 | or a | 4-t | o-2  | bir |      | y en |      |      |

A: For a 4-to-2 priority encoder.

C: Which encoder's inputs are contrary to its input assumptions? Why?



P3 (10 points): Consider the SR Latch shown below.



A: Complete the characteristic table.

|   |   | 1 |   |   |
|---|---|---|---|---|
| G | S | R | Q | Р |
| 0 | 0 | 0 |   |   |
| 0 | 0 | 1 |   |   |
| 0 | 1 | 0 |   |   |
| 0 | 1 | 1 |   |   |
| 1 | 0 | 0 |   |   |
| 1 | 0 | 1 |   |   |
| 1 | 1 | 0 |   |   |
| 1 | 1 | 1 |   |   |

B: Complete the timing diagram shown below for outputs Q and P.

| G |  |  |
|---|--|--|
| S |  |  |
| R |  |  |
| Q |  |  |
| Ρ |  |  |



**P4 (10 points):** Answer the following questions based on the circuit shown below.



A: The latch that appears (twice) in the above circuit is a D Latch. Show the characteristic table for a D Latch.

B: Fill in the timing diagram for the values shown above.



**P5 (10 points):** Show how a D Flip-Flop (DFF) can be made using a T Flip-Flop (TFF). Your circuit must contain all of the functionality of a DFF (PRESET and CLEAR implementations are not necessary), but must use only one TFF and one 2-1 MUX.

**P6 (15 points):** We want to create an LM-latch with the characteristic table shown below:

| L | Μ | Q      | Р      |
|---|---|--------|--------|
| 0 | 0 | 0      | 1      |
| 0 | 1 | No     | No     |
|   |   | change | change |
| 1 | 0 | No     | No     |
|   |   | change | change |
| 1 | 1 | 1      | 0      |

A: Show the characteristic table for the SR Latch shown below.

| S | R | Q | Р |
|---|---|---|---|
| 0 | 0 |   |   |
| 0 | 1 |   |   |
| 1 | 0 |   |   |
| 1 | 1 |   |   |



B: For each input combination to the LM-latch characteristic table shown above, write the values of S and R that will produce the output combinations. Then derive expressions for S and R in terms of L and M. C: Draw the completed circuit for the LM-latch with the characteristic table based on the expressions derived in part B.

**P7 (20 points):** Answer the following questions about the Negative-Edge-Triggered Master-Slave DFF with PRESET\_N and CLEAR\_N connections, as shown in Figure 5.12 from the book. Suppose that D=1 and CLK=0. Answer the following questions about Q.

A: Ignoring PRESET\_N and CLEAR\_N (assume that they are not connected), what effect does pulsing the clock have on Q in this circuit? B: What effect does pulsing PRESET\_N have on this circuit?

C: What effect does pulsing CLEAR\_N have on this circuit?

D: What will be the value of Q if PRESET N=0 and CLEAR N=1?

E: What will be the value of Q if PRESET N=0 and CLEAR N=0?

F: What will be the value of Q if the clock is pulsed while PRESET\_N=0?

G: What will be the value of Q if the clock is pulsed while CLEAR\_N=0?

H: What will be the value of Q if the clock is pulsed while CLEAR\_N=1 and PRESET\_N=1?