Representation and Arithmetic
 Assigned: Week 10
 Due Date: Nov. 4, 2019

P1 (20 points): Complete the following timing diagrams for the specified components. The clock is C. You may assume that Q is initially at 0 unless specified otherwise.
A: A positive-edge-triggered D Flip-Flop (DFF).

B: A negative-edge-triggered T Flip-Flop (TFF).

C: A positive-edge-triggered JK Flip-Flop (JKFF).

D: A negative-edge-triggered DFF with active-low Preset P (preset occurs when $\mathrm{P}=0$).

P2 (12 points): A given register file can support storing values in its 32 registers. Each register is designed to hold numbers ranging from -25 to +25 (in 2's complement) with no additional bits beyond those necessary to hold numbers in this range. Answer the following questions:
A: What is the width of the LD_DATA bus? (Note that width is the number of bits)
B: What is the width of each register?
C: What is the width of the RA bus?
D: What is the width of the WA bus?
E: How many DFFs exist in this register file?
F: What type of decoder is used in this register file?

Cpr E 281 HW09
ELECTRICAL AND COMPUTER ENGINEERING
IOWA STATE UNIVERSITY

Representation and Arithmetic
Assigned: Week 10
Due Date: Nov. 4, 2019

P3 (16 points): Fill in the diagram below for the register file containing four 4-bit registers given the following data points:
Register 0 contains the value 3, Register 1 contains the value 10, Register 2 contains the value 14, and Register 3 contains 5.
Writing is enabled.
The user will write the value 7 to register 1 on the next clock cycle. The register file's output is 14 .

P4 (16 points): Design a four-bit register with both shift and parallel load features. The inputs of the register include a 2 -bit input bus J as $J_{1} J_{0}$, a 4 -bit input bus X as $\mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$, and a clock signal. The register will have a 4-bit output bus Q that represents the value stored in the register. You are allowed to use any number and size of the following: DFFs, MUXes, decoders, encoders, AND gates, OR gates, and NOT gates (Notice that you do not need all of them). The operation of the registers are defined below:

If $J=0$, then the output Q will take on the values in $X . Q_{3}^{\text {new }}=X_{3}, Q_{2}^{\text {new }}=$ $X_{2}, Q_{1}^{\text {new }}=X_{1}, Q_{0}^{\text {new }}=X_{0}$
If $J=1$, then the output Q remains unchanged. $Q_{3}^{\text {new }}=Q_{3}^{\text {old }}, Q_{2}^{\text {new }}=$ $Q_{2}^{\text {old }}, Q_{1}^{\text {new }}=Q_{1}^{\text {old }}, Q_{0}^{\text {new }}=Q_{0}^{\text {old }}$
If $J=2$, then the output Q is shifted to the left $Q_{3}^{\text {new }}=Q_{2}^{\text {old }}, Q_{2}^{\text {new }}=$

Representation and Arithmetic
 Assigned: Week 10
 Due Date: Nov. 4, 2019

$Q_{1}^{\text {old }}, Q_{1}^{\text {new }}=Q_{0}^{\text {old }}, Q_{0}^{\text {new }}=X_{0}$
If $\mathrm{J}=3$, then the output Q is shifted to the right. $Q_{3}^{\text {new }}=X_{0}, Q_{2}^{\text {new }}=$ $Q_{3}^{\text {old }}, Q_{1}^{\text {new }}=Q_{2}^{\text {old }}, Q_{0}^{\text {new }}=Q_{1}^{\text {old }}$

P5 (16 points): For the questions below, assume that the clock is 640 Hz (640 pulses per second at a fixed interval).
A: If the clock is connected to a modulo- 10 counter, how long does it take the counter to count through each number and return to zero?
B: If the clock is connected to a modulo- 32 counter, how long does it take the counter to count through each number and return to zero?
C: How many flip-flops would be required to construct a modulo-32 counter?
D: What type of counter would be necessary such that the counter will return to zero after exactly 64 seconds?

P6 ($\mathbf{1 5}$ points): The component below is a 5-bit synchronous up-counter with synchronous parallel-load. Design the following components using 5-bit synchronous up-counters and other gates as necessary:

A: Design a 5-bit down counter.
B: Design a counter which produces the following sequence: $3,4,5,6,7$, $8,9,10,11,12,13,14,15,16,17,18,3,4,5,6,7 \ldots$.

P7 (5 points): What advantages are there to using a synchronous upcounter instead of an asynchronous up-counter? What advantages are there to using an asynchronous up-counter instead of a synchronous up-counter?

