Synchronous Sequential Circuits
 Assigned: Week 13
 Due Date: Dec. 2, 2019

P1 (15 points): The following all concern state machines that detect if a number is a multiple of three ($3,6,9,12 \ldots$). Draw the specified state diagrams that will output $Z=1$ based on the input W.
A: Let F be the number of clock cycles for which the input W has been one. Draw a state diagram for a Moore FSM that outputs $Z=1$ if F is a multiple of 3.
B : Let G be the three-bit binary representation of the last three values of W , with the most significant bit as the earliest observed value of W . Assume that G is initially zero. Draw a state diagram for a Mealy FSM that outputs $Z=1$ if G is a multiple of 3 .
C: For every clock cycle, let the new value of H be twice its previous value plus the value of $W\left(H^{*}=2 \mathrm{H}_{0}+W\right)$. This means that H is the binary representation of all values observed on W (a bit string of unlimited length). Assume that H is initially zero. Draw a state diagram for a Moore FSM that outputs $Z=1$ if H is a multiple of 3 .

P2 (15 points): Perform state minimization on the following state diagrams.

P3 (10 points): The circuit below looks like a counter. Draw a state diagram which illustrates its counting sequence.

Cpr E 281 HW12
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits

Assigned: Week 13
Due Date: Dec. 2, 2019

P4 (20 points): For this problem, you are given two FSMs: FSM T has six states, one bit input Z, and three bit output $X_{2} X_{1} X_{0}$. FSM U has ten states, one bit input G, and five bit output $Z Y_{3} Y_{2} Y_{1} Y_{0}$. These FSMs are connected as shown below:

Each FSM shown here has states determined by a sufficient number of positive-edge-triggered DFFs.

Synchronous Sequential Circuits
 Assigned: Week 13
 Due Date: Dec. 2, 2019

A: Draw the state table for FSM U, a modulo-10 counter that counts down when $\mathrm{G}=1$ and holds its value constant when $\mathrm{G}=0$. Upon reset, FSM U should return to a state which outputs $\mathrm{Y}=9$. The output $\mathrm{Z}=1$ if $\mathrm{Y}=0$ and $\mathrm{G}=1$. Make state assignments such that the output Y is equal to the current state (note: the state variable and the output should not have the same name).
B: FSM U has one input and four state variables, so each expression for the next state is a function of five inputs. To avoid using a 5 -variable Kmap, we will instead implement FSM U using four 2-to-1 MUXes with G as the select line. Let us assume that $\mathrm{G}=1$. Derive the next state expressions assuming that $G=1$. Show that the K-maps for the next state variables produce these expressions.

$$
\text { For } G=1: \begin{aligned}
& S_{3}^{\text {new }}=\bar{S}_{3} \bar{S}_{2} \bar{S}_{1} \bar{S}_{0}+S_{3} S_{0}, S_{2}^{\text {new }}=S_{3} \bar{S}_{0}+S_{2} S_{1}+S_{2} S_{0} \\
S_{1}^{\text {new }} & =S_{2} \bar{S}_{1} \bar{S}_{0}+S_{3} \bar{S}_{0}+S_{1} S_{0}, S_{0}^{\text {new }}=\bar{S}_{0}
\end{aligned}
$$

C: FSM T is a modulo- 6 counter that also counts down when $Z=1$ and resets to a state which outputs $\mathrm{X}=5$. Draw the state table for FSM T. D: If both FSMs are treated as a single FSM as shown in the initial diagram, what type of circuit does it create? Please specify the direction, encoding, and modulus.

P5 (20 points): The following Moore FSM state table is incomplete. The clock for this FSM (FSM 1) has a period of 100 microseconds such that the button for the input X, controlled by the user, cannot be pressed for only one clock cycle. In addition, button X , when pressed, will output $\mathrm{X}=0$.

Current State	Next State		Output
	$\mathrm{X}=0$	X $=1$	W
A (reset)	B	C	0
B	B	C	0
C	D	--	0
D	E	--	1
E	F	--	1
F	G	A	1
G	G	0	

I: Draw a state diagram for this state table.
II: How many full button press cycles (push and release) will cause this FSM to pass through all seven states and return to state A?
III: Use the following state assignments: $\mathrm{A}=000, \mathrm{~B}=001, \mathrm{C}=010, \mathrm{D}=100$, $\mathrm{E}=101, \mathrm{~F}=110, \mathrm{G}=111$. Use a $\mathrm{K}-\mathrm{map}$ to show that the next state expressions for FSM 1 are:
$Y_{2}^{\text {new }}=(\bar{X})\left(Y_{2}+Y_{1}\right), Y_{1}^{\text {new }}=\left(Y_{1}+Y_{0}\right)\left(X+Y_{2}\right)\left(\bar{X}+\overline{Y_{2}}\right), Y_{0}^{\text {new }}=(\bar{X})\left(\overline{Y_{2}}+Y_{1}+\bar{Y}_{0}\right)\left(Y_{2}+\bar{Y}_{1}\right)$
Assume that DFFs are used to hold the state values.

Synchronous Sequential Circuits
 Assigned: Week 13
 Due Date: Dec. 2, 2019

P6 (20 points): Design a FSM with no inputs (other than CLK and RESETN) and four-bit output Z such that the FSM outputs the sequence $2,3,4,5,9,13$. The state assignments should be equal to the output and your circuit should use four positive-edge-triggered JKFFs and a minimal number of other gates.
A: Draw a state diagram. Don't forget the reset signal.
B: Draw the state-assigned table. This table should also include the excitation for the JKFFs (the values for J and K along with the next state values).
C: Draw K-maps to show that the inputs to the JK FF are as follows:
$J_{3}=s_{2} s_{0}, K_{3}=s_{2}, J_{2}=s_{0}, K_{2}=s_{0}, J_{1}=s_{3} s_{2}, K_{1}=s_{0}, J_{0}=1, K_{0}=s_{3} s_{2}+s_{1}$
D: How might JKFF 2 be simplified given that both of its inputs are the same?

