Name:			ID Number:		
Lab Section:	Mon 12-3 (#13)	Tue 11-2 (#16)	Wed 8-11 (#8)	Thur 11-2 (#14)	Fri 11-2 (#7)
(circle one)		Tue 2-5 (#11)	Wed 11-2 (#18)	Thur 11-2 (#17)	
		Tue 2-5 (#20)		Thur 2-5 (#10)	
				Thur 5-8 (#9)	

1. True/False Questions (10 x 1p each = 10p)

(a) I forgot to write down my name, lab section, and student ID number.	TRUE / FALSE
(b) Removing a NOT gate from a D Flip-Flop makes it positive-edge triggered.	TRUE / FALSE
(c) A 4-to-1 multiplexer can be built with 7 basic logic gates (AND, NOT, OR).	TRUE / FALSE
(d) An XNOR gate can be constructed using only one 2-to-1 multiplexer.	TRUE / FALSE
(e) The parallel input lines of an 8-bit register are one-hot encoded.	TRUE / FALSE
(f) Shannon mapped Boolean logic to switches in his PhD dissertation.	TRUE / FALSE
(g) Big Endian is used more often today than Little Endian.	TRUE / FALSE
(h) In 1's complement notation it is possible to have both $+0$ and -0 .	TRUE / FALSE
(i) In 32-bit IEEE 754 format it is possible to have both +0.0 and -0.0.	TRUE / FALSE
(j) Chewbacca's home planet is called Endor.	TRUE / FALSE

2. Venn Diagrams (5 x 1p each = 5p) Write the <u>Boolean expression</u> that corresponds to each Venn diagram below each figure.

3. Minimization with K-maps (3 x 5p each = 15p) a) Draw the truth table for $f(a,b,c,d) = \prod M(0, 2, 3, 7, 14) + D(8,15)$. (5p)

b) Use a K-map to derive the minimum-cost SOP expression for this function. (5p)

4. Basic Circuits (3 x 5p each = 15p).

In all sub-problems, draw the complete wiring diagram using logic gates (no high-level graphical symbols are allowed in this problem). <u>Clearly label all inputs and outputs.</u>

(a) Gated D Latch (with NAND gates for the latch).

(b) 4-to-1 multiplexer.

(c) XOR gate, implemented using only AND, OR, and NOT gates.

5. Number Conversions (3p + 4p + 4p + 4p = 15p)(a) Convert 16310 to binary.

(b) Convert the following 32-bit float number (in IEEE 754 format) to decimal.

(c) Write down the 32-bit floating point representation (in IEEE 754 format) for 15.0

(d) Convert -53_{10} to an <u>8-bit</u> binary number in 2's complement representation.

6. Flip-Flops and Timing Diagrams (3 x 5p = 15p)

Complete the timing diagram for the specified flip-flop such that the output Q will be as indicated. Assume that the input signal can change only on the <u>vertical lines</u>. Also, assume that the setup time t_{su} and the hold time t_h are <u>each</u> equal to the width of one square.

a) Complete the timing diagram for the D input to a <u>negative</u>-edge triggered D flip-flop.

b) Complete the timing diagram for the T input to a <u>negative</u>-edge triggered T flip-flop.

c) Complete the timing diagram for the J input to a <u>negative</u>-edge triggered JK flip-flop.

- 7. Full Adder (5p + 10p = 15p)
- a) Draw the truth table for a full adder with inputs Xi, Yi, and Ci and outputs Ci+1 and Si. (5p)

b) Implement a full adder with a <u>minimal</u> number of 4-to-1 multiplexers and <u>no other logic</u> <u>gates</u>. Assume that the input signals are available <u>only</u> in their non-inverted form, along with the constants 0 and 1. Clearly label all inputs, outputs, and pins of your circuit. (10p) 8. Alternative Implementation (10p)

Implement the logic expression in each sub-problem in three different ways using the circuits below. In this problem, you are <u>not allowed</u> to use any other logic gates. Assume that a and b are available in both their inverted and non-inverted form, along with the constants 0 and 1. Indicate with words if some implementations are not possible. <u>Label all inputs and outputs.</u>

a) Implement in three different ways: f = a + b.

b) Implement in three different ways: f = a + b.

c) Implement in three different ways: $f = \overline{a b}$.

9. Adder/Subtractor with Overflow Detection (10p + 5p = 15p)

(a) You are given a 3-bit adder, but it is too small for what you need, and it also does not compute an overflow flag. Complete the wiring diagram below to implement a functional 4-bit adder/subtractor unit that can also detect when an overflow has occurred. Clearly label all inputs, outputs, and pins of your circuit.

(b) Explain the correct solution in 3-4 sentences.

10. Shifter Circuit (10p + 5p = 15p)

(a) Implement a shifter circuit that takes in a 4-bit unsigned binary number W and shifts all of its bits either to the left or to the right by 1 position. The direction of the shift is determined by one of the inputs to this circuit that is called R. If R=0, then the circuit shifts to the left. If R=1, then the circuit shifts to the right. In both cases the bit that is shifted out is ignored and the empty space that is created is padded with a zero. Label all inputs and outputs.

(b) Explain the correct solution in 3-4 sentences.

Question	Max	Score
1. True/False	10	
2. Venn Diagrams	5	
3. Minimization with K-maps	15	
4. Basic Circuits	15	
5. Number Conversions	15	
6. Flip-Flops	15	
7. Full Adder	15	
8. Alternative Implementation	10	
9. Adder/Subtractor	15	
10. Shifter Circuit	15	
TOTAL:	130	