

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

NAND and NOR Logic Networks

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © *Alexander Stoytchev*

Administrative Stuff

• HW2 is due today

Administrative Stuff

- HW3 is out
- It is due on Monday Sep 16 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
 - Staple all of your pages together

Quick Review

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

[Figure 2.8 from the textbook]

Truth Table for NOT

Truth Table for AND

Truth Table for OR

DeMorgan's Theorem

Synthesize the Following Function

x ₁	X ₂	f(x ₁ , x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

X ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

 $f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$

2) Write the expressions for all four

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$$

2) Write the expressions for all four

x ₁	x ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$$

$$\overline{x}_1 \overline{x}_2 \qquad \overline{x}_1 x_2 \qquad 0 \qquad x_1 x_2$$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

 $f(x_1, x_2) = 1 \cdot f_{00} + 1 \cdot f_{01} + 0 \cdot f_{10} + 1 \cdot f_{11}$ $f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$

3) Then just add them together

x ₁	X ₂	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

 $f(x_1, x_2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + 0 + x_1 x_2$

(uses the ones of the function)

Sum-of-Products Form (for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 1 \end{array}$

Sum-of-Products Form (for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 1 \end{array}$

Sum-of-Products Form (for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0\\ 1\\ 2\\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	0 0 0 1

$$f(x_1, x_2) = m_3 = x_1 x_2$$

(In this case there is just one product and there is no need for a sum)

Another Example

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c}1\\1\\0\\1\end{array}$

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	1 1 0 1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0	0	0	$m_0 = \overline{x}_1 \overline{x}_2$	1
1	0	1	$m_1 = \overline{x}_1 x_2$	1
2	1	0	$m_2 = x_1 \overline{x_2}$	0
3	1	1	$\parallel m_3 = x_1 x_2$	1

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$

= $m_0 + m_1 + m_3$
= $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	0 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0	0	0	$ M_0 = x_1 + x_2 M_1 = x_1 + \overline{x_2} M_2 = \overline{x_1} + x_2 M_2 = \overline{x_1} + x_2 $	0
1	0	1		1
2	1	0		1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0	0	0	$M_0 = x_1 + x_2$	0
1	0	1	$M_1 = x_1 + \overline{x_2}$	1
2	1	0	$M_2 = \overline{x_1} + x_2$	1
3	1	1	$M_3 = \overline{x_1} + \overline{x_2}$	1

 $f(x_1, x_2) = M_0 = x_1 + x_2$

(In this case there is just one sum and there is no need for a product)

Another Example

(for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0 1 2 3	0 0 1	0 1 0 1	$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_2 = \overline{x_1} + \overline{x_2}$	0 1 0 1

(for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0 1	00	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$	0 1
$\frac{2}{3}$	$\begin{vmatrix} 1\\ 1 \end{vmatrix}$	$0 \\ 1$	$ M_2 = \overline{x}_1 + x_2 M_3 = \overline{x}_1 + \overline{x}_2 $	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0	0	0	$M_0 = x_1 + x_2$	0
1	0	1	$\ M_1 = x_1 + \overline{x_2} $	1
2	1	0	$\ M_2 = \overline{x_1} + x_2$	0
3	1	1	$\ M_3 = \overline{x_1} + \overline{x_2}$	1

$$f(x_1, x_2) = M_0 \bullet M_2 = (x_1 + x_2) \bullet (\overline{x_1} + x_2)$$

More Examples

Example 2.10

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 x_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 \overline{x}_3 \\ m_6 = x_1 x_2 \overline{x}_3 \\ m_7 = x_1 x_2 x_3 \end{vmatrix} $	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$
Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 \overline{x}_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 \overline{x}_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 \overline{x}_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

 $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

• The SOP expression is:

$$f = m_2 + m_3 + m_4 + m_6 + m_7$$

= $\overline{x}_1 x_2 \overline{x}_3 + \overline{x}_1 x_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 \overline{x}_3 + x_1 x_2 x_3$

• This could be simplified as follows:

$$f = \overline{x}_1 x_2 (\overline{x}_3 + x_3) + x_1 (\overline{x}_2 + x_2) \overline{x}_3 + x_1 x_2 (\overline{x}_3 + x_3)$$

= $\overline{x}_1 x_2 + x_1 \overline{x}_3 + x_1 x_2$
= $(\overline{x}_1 + x_1) x_2 + x_1 \overline{x}_3$
= $x_2 + x_1 \overline{x}_3$

Example 2.12

Implement the function $f(x_1, x_2, x_3) = \prod M(0, 1, 5)$,

which is equivalent to $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 & 1 & & \ 2 & & \ 3 & & \ 4 & & \ 5 & \ 6 & & \ 7 & & \ \end{array}$	0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	$ \begin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 \overline{x}_3 \\ m_6 = x_1 \overline{x}_2 \overline{x}_3 \\ m_7 = x_1 \overline{x}_2 \overline{x}_3 \end{array} $	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

 $f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$

• The POS expression is:

$$f = M_0 \cdot M_1 \cdot M_5$$

= $(x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$

This could be simplified as follows:

$$f = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$$

= $((x_1 + x_2) + x_3)((x_1 + x_2) + \overline{x}_3)(x_1 + (x_2 + \overline{x}_3))(\overline{x}_1 + (x_2 + \overline{x}_3))$
= $((x_1 + x_2) + x_3\overline{x}_3)(x_1\overline{x}_1 + (x_2 + \overline{x}_3))$
= $(x_1 + x_2)(x_2 + \overline{x}_3)$

Two New Logic Gates

NAND Gate

AND vs NAND

AND followed by NOT = NAND

NAND followed by NOT = AND

OR vs NOR

OR followed by **NOT** = **NOR**

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$$

NOR followed by NOT = OR

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

Why do we need two more gates?

Why do we need two more gates?

They can be implemented with fewer transistors.

(more about this later)

They are simpler to implement, but are they also useful?

Building a NOT Gate with NAND

X	X	f
0	0	1
0	1	1
1	0	1
1	1	0

Building a NOT Gate with NAND

Building a NOT Gate with NAND

Thus, the two truth tables are equal!

Building an AND gate with NAND gates

Desired AND Gate NAND Construction А Q () в B $\mathbf{Q} = \mathbf{A} \text{ AND } \mathbf{B}$ = NOT(NOT(**A** AND **B**)) **Truth Table** Input A Input B **Output Q** 0 0 0 0 1 0 0 0 1 1 1 1

Building an OR gate with NAND gates

Desired OR Gate

NAND Construction

 $\mathbf{Q} = \mathbf{A} \text{ OR } \mathbf{B}$

= NOT[NOT(**A** AND **A**) AND NOT(**B** AND **B**)]

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Implications

Implications

Any Boolean function can be implemented with only NAND gates!

NOR gate with NAND gates

Desired NOR Gate

NAND Construction

Q = NOT(A OR B)

= NOT{ NOT[NOT(**A** AND **A**) AND NOT(**B** AND **B**)]}

I	ru	th	Та	b	e

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	0

XOR gate with NAND gates

Desired XOR Gate

NAND Construction

Q = **A** XOR **B**

= NOT[NOT{**A** AND NOT(**A** AND **B**)} AND NOT{**B** AND NOT(**A** AND **B**)}]

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NAND gates

Desired XNOR Gate

NAND Construction

Q = NOT(**A** XOR **B**)

= NOT[NOT[NOT{**A** AND NOT(**A** AND **B**)} AND NOT{**B** AND NOT(**A** AND **B**)}]]

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

[http://en.wikipedia.org/wiki/NAND_logic]

Building a NOT Gate with NOR

X	X	f
0	0	1
0	1	0
1	0	0
1	1	0

Building a NOT Gate with NOR

Building a NOT Gate with NOR

Thus, the two truth tables are equal!

Building an OR gate with NOR gates

Desired Gate

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

[http://en.wikipedia.org/wiki/NOR_logic]

Let's build an AND gate with NOR gates

Let's build an AND gate with NOR gates

Desired Gate

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

[http://en.wikipedia.org/wiki/NOR_logic]

Implications

Implications

Any Boolean function can be implemented with only NOR gates!
NAND gate with NOR gates

Desired Gate

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

[http://en.wikipedia.org/wiki/NOR_logic]

XOR gate with NOR gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

[http://en.wikipedia.org/wiki/NOR_logic]

XNOR gate with NOR gates

Desired XNOR Gate

NOR Construction

Truth Table

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

[http://en.wikipedia.org/wiki/NOR_logic]

The following examples came from this book

DeMorgan's theorem in terms of logic gates

(a)
$$\overline{x_1 x_2} = \overline{x_1} + \overline{x_2}$$

DeMorgan's theorem in terms of logic gates

Function Synthesis

Using NAND gates to implement a sum-of-products

[Figure 2.27 from the textbook]

Using NOR gates to implement a product-of sums

[Figure 2.28 from the textbook]

Example 2.13

Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NOR gates.

Example 2.13

Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NOR gates.

The POS expression is: $f = (x_1 + x_2) (x_2 + \overline{x_3})$

NOR-gate realization of the function

(a) POS implementation

(b) NOR implementation

[Figure 2.29 from the textbook]

Example 2.14

Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NAND gates.

Example 2.14

Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NAND gates.

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$

NAND-gate realization of the function

(a) SOP implementation

(b) NAND implementation

Questions?

THE END