
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

NAND and NOR
Logic Networks

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

• HW2 is due today

Administrative Stuff
• HW3 is out

• It is due on Monday Sep 16 @ 4pm.

• Please write clearly on the first page (in BLOCK
CAPITAL letters) the following three things:

§ Your First and Last Name
§ Your Student ID Number
§ Your Lab Section Letter
§ Staple all of your pages together

Quick Review

x 1
x 2

x 1 x 2 +

AND gate

x x
x 1
x 2

x 1 x 2 •

The Three Basic Logic Gates

[Figure 2.8 from the textbook]

OR gateNOT gate

Truth Table for NOT

x x

x x

0
1

1
0

x 1
x 2

x 1 x 2 •

Truth Table for AND

Truth Table for OR

x 1
x 2

x 1 x 2 +

DeMorgan’s Theorem

Synthesize the Following Function

x1 x2 f(x1,x2)

0 0 1

0 1 1

1 0 0

1 1 1

1) Split the function into a sum of 4 functions

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

1) Split the function into a sum of 4 functions

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

2) Write the expressions for all four

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

2) Write the expressions for all four

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

f(x1, x2) = 1 • f00 + 1 • f01 + 0 • f10 + 1 • f11

3) Then just add them together

x1 x2 f(x1, x2) f00(x1, x2) f01(x1, x2) f10(x1, x2) f11(x1, x2)

0 0 1 1 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 1 0

1 1 1 0 0 0 1

3) Then just add them together

Sum-of-Products Form
(uses the ones of the function)

Sum-of-Products Form
(for the AND logic function)

f (x1, x2)

Sum-of-Products Form
(for the AND logic function)

f (x1, x2)

Sum-of-Products Form
(for the AND logic function)

f (x1, x2)

f (x1, x2) = m3 = x1 x2

(In this case there is just one product and there is no need for a sum)

Another Example

Sum-of-Products Form

f (x1, x2)

Sum-of-Products Form

f (x1, x2)

Sum-of-Products Form

f (x1, x2)

Product-of-Sums Form
(uses the zeros of the function)

Product-of-Sums Form
(for the OR logic function)

f (x1, x2)

Product-of-Sums Form
(for the OR logic function)

f (x1, x2)

Product-of-Sums Form
(for the OR logic function)

f (x1, x2)

f (x1, x2) = M0 = x1 + x2

(In this case there is just one sum and there is no need for a product)

Another Example

Product-of-Sums Form
(for this logic function)

f (x1, x2)

Product-of-Sums Form
(for this logic function)

f (x1, x2)

Product-of-Sums Form
(for this logic function)

f (x1, x2)

f (x1, x2) = M0 • M2 = (x1 + x2) • (x1 + x2)

More Examples

Example 2.10
Implement the function f(x1, x2, x3) = Σ m(2, 3, 4, 6, 7)

Minterms and Maxterms
(with three variables)

[Figure 2.22 from the textbook]

Minterms and Maxterms
(with three variables)

• The SOP expression is:

• This could be simplified as follows:

Example 2.12
Implement the function f(x1, x2, x3) = Π M(0, 1, 5),

which is equivalent to f(x1, x2, x3) = Σ m(2, 3, 4, 6, 7)

Minterms and Maxterms
(with three variables)

• The POS expression is:

• This could be simplified as follows:

Two New Logic Gates

NAND Gate

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

NOR Gate

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

AND vs NAND

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x 1
x 2

x 1 x 2 •

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1
x 2

x 1 x 2 •

AND followed by NOT = NAND

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1
x 2

x 1 x 2 • x 1 x 2 •

f
1
1
1
0

x 1
x 2

x 1 x 2 •

NAND followed by NOT = AND

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1
x 2

x 1 x 2 •

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x 1 x 2 •

f
0
0
0
1

x 1
x 2

x 1 x 2 •

OR vs NOR

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

x 1
x 2

x 1 x 2 +

OR followed by NOT = NOR

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

f
1
0
0
0

x 1
x 2

x 1 x 2 + x 1 x 2 +

NOR followed by NOT = OR

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

f
0
1
1
1

x 1
x 2

x 1 x 2 + x 1 x 2 + x 1
x 2

x 1 x 2 +

Why do we need two more gates?

Why do we need two more gates?

They can be implemented with fewer transistors.

(more about this later)

They are simpler to implement,
but are they also useful?

Building a NOT Gate with NAND

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 1
1 0 1
1 1 0

Building a NOT Gate with NAND

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 1
1 0 1
1 1 0

impossible
combinations

Building a NOT Gate with NAND

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 1
1 0 1
1 1 0

impossible
combinations

Thus, the two truth tables are equal!

Building an AND gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]

Building an OR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]

Implications

Implications

Any Boolean function can be implemented
with only NAND gates!

NOR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]

XOR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]

XNOR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]

Building a NOT Gate with NOR

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 0
1 0 0
1 1 0

Building a NOT Gate with NOR

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 0
1 0 0
1 1 0

impossible
combinations

Building a NOT Gate with NOR

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 0
1 0 0
1 1 0

impossible
combinations

Thus, the two truth tables are equal!

Building an OR gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]

Let’s build an AND gate with NOR gates

Let’s build an AND gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]

Implications

Implications

Any Boolean function can be implemented
with only NOR gates!

NAND gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]

XOR gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]

XNOR gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]

The following examples came from this book

[Platt 2009]

[Platt 2009]

[Platt 2009]

[Platt 2009]

[Platt 2009]

[Platt 2009]

DeMorgan’s theorem in terms of logic gates

x 1

x 2

x 1
x 2

x 1 x 2 x 1 x 2 + = (a)

x 1
x 2

DeMorgan’s theorem in terms of logic gates

x 1
x 2

x 1

x 2

x 1
x 2

x 1 x 2 + x 1 x 2 = (b)

Function Synthesis

Using NAND gates to implement
a sum-of-products

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

[Figure 2.27 from the textbook]

Using NOR gates to implement
a product-of sums

[Figure 2.28 from the textbook]

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

Example 2.13
Implement the function f(x1, x2, x3) = Σ m(2, 3, 4, 6, 7)
using only NOR gates.

Example 2.13

The POS expression is: f = (x1 + x2) (x2 + x3)

Implement the function f(x1, x2, x3) = Σ m(2, 3, 4, 6, 7)
using only NOR gates.

NOR-gate realization of the function
x1

f

(a) POS implementation

(b) NOR implementation

f

x3

x2

x1

x3

x2

[Figure 2.29 from the textbook]

Example 2.14
Implement the function f(x1, x2, x3) = Σ m(2, 3, 4, 6, 7)
using only NAND gates.

Example 2.14
Implement the function f(x1, x2, x3) = Σ m(2, 3, 4, 6, 7)
using only NAND gates.

The SOP expression is: f = x2 + x1x3

NAND-gate realization of the function

[Figure 2.30 from the textbook]

f

f

(a) SOP implementation

(b) NAND implementation

x1

x3

x2

x3

x2

x1

Questions?

THE END

