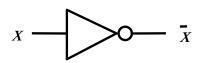


CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples


CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

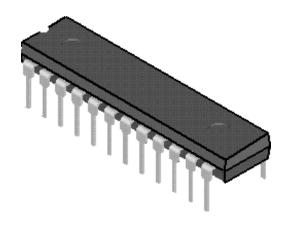
Administrative Stuff

- HW3 is out
- It is due on Monday Sep 16 @ 4pm.
- Please write clearly on the first page (in BLOCK CAPITAL letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, please
 - Staple your pages

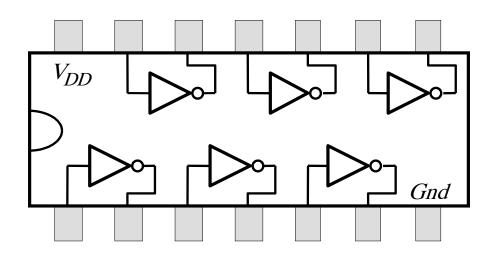
Quick Review

The Three Basic Logic Gates

$$X_1$$
 X_2
 $X_1 \cdot X_2$


$$X_1$$
 X_2
 $X_1 + X_2$

NOT gate


AND gate

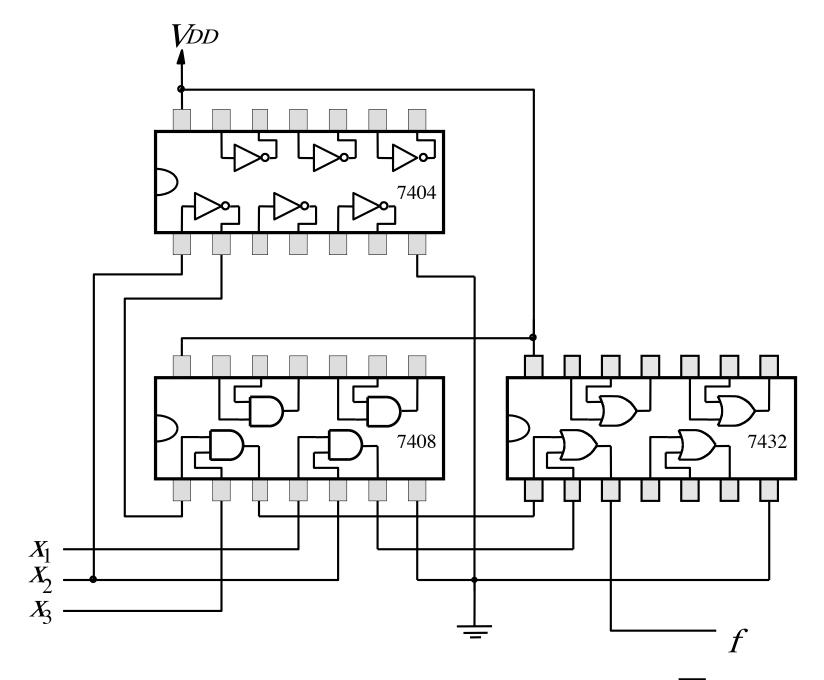
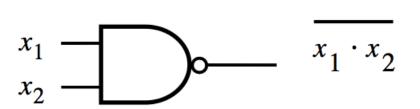
OR gate

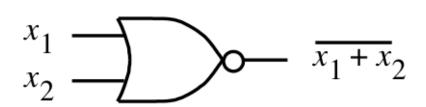
You can build any circuit using only these three gates

(a) Dual-inline package

(b) Structure of 7404 chip

Figure B.21. A 7400-series chip.

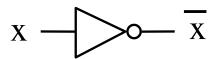



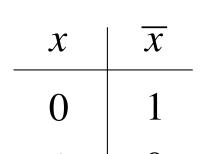

Figure B.22. An implementation of $f = x_1x_2 + \overline{x_2}x_3$.

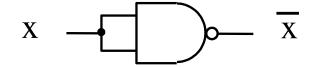
NAND Gate

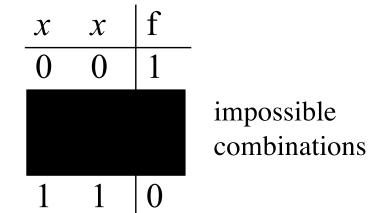
x_1	x_2	f
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

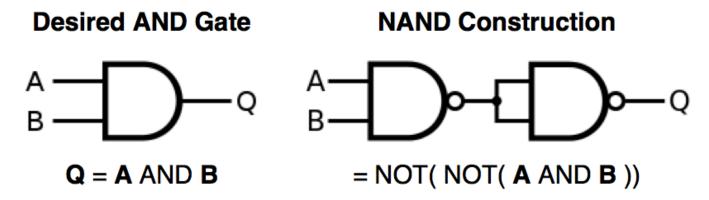

x_2	f
0	1
1	0
0	0
1	0
	0 1 0


Why do we need two more gates?

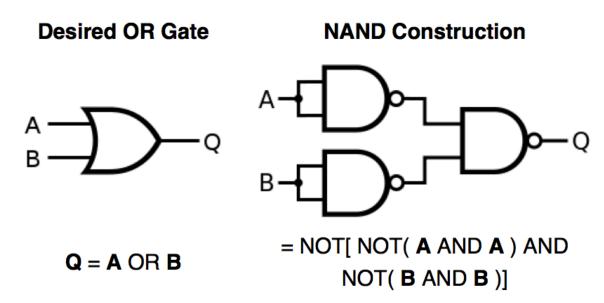

They can be implemented with fewer transistors.


(more about this later)

Building a NOT Gate with NAND



Thus, the two truth tables are equal!


Building an AND gate with NAND gates

Truth Table

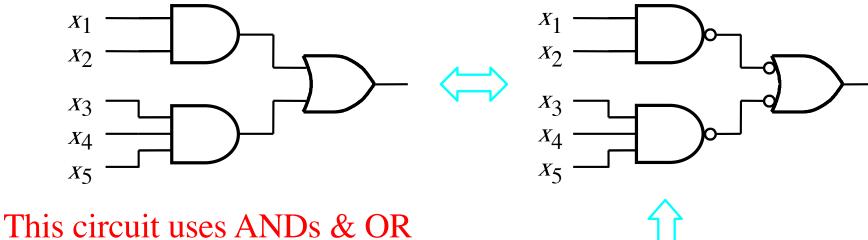
Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

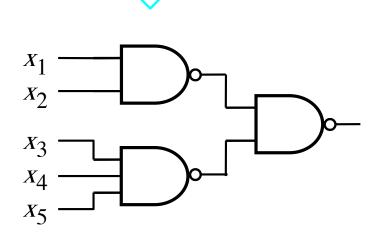
Building an OR gate with NAND gates

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

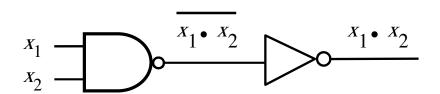
Implications


Any Boolean function can be implemented with only NAND gates!


Implications

Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!


NAND-NAND Implementation of Sum-of-Products Expressions

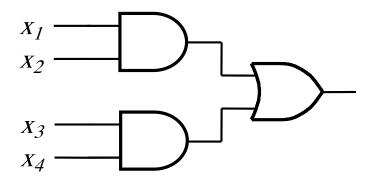
This circuit uses only NANDs

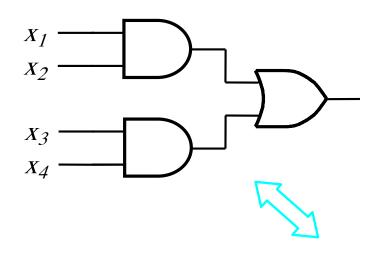
NAND followed by NOT = AND

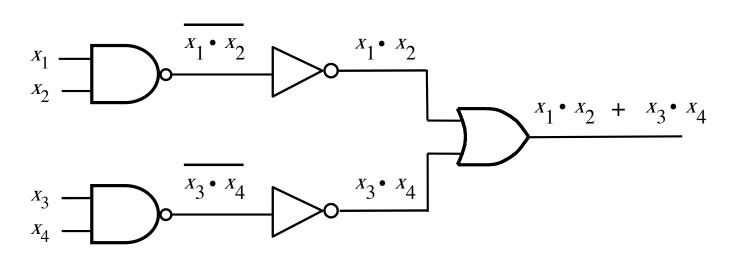
$$X_1$$
 X_2
 $X_1 \bullet X_2$

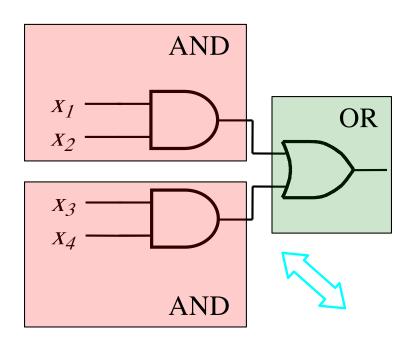
x_1	x_2	<u>f</u>	<u>f</u>
0	0	1	0
0		1	0
1	0	1	0
1	1	0	1

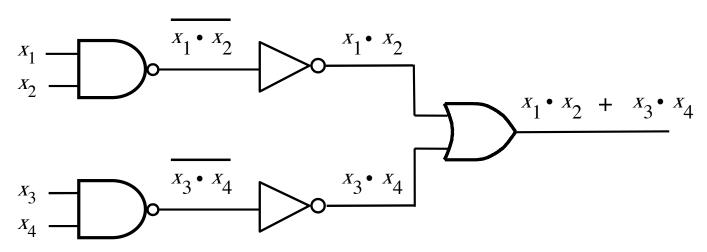
$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$$

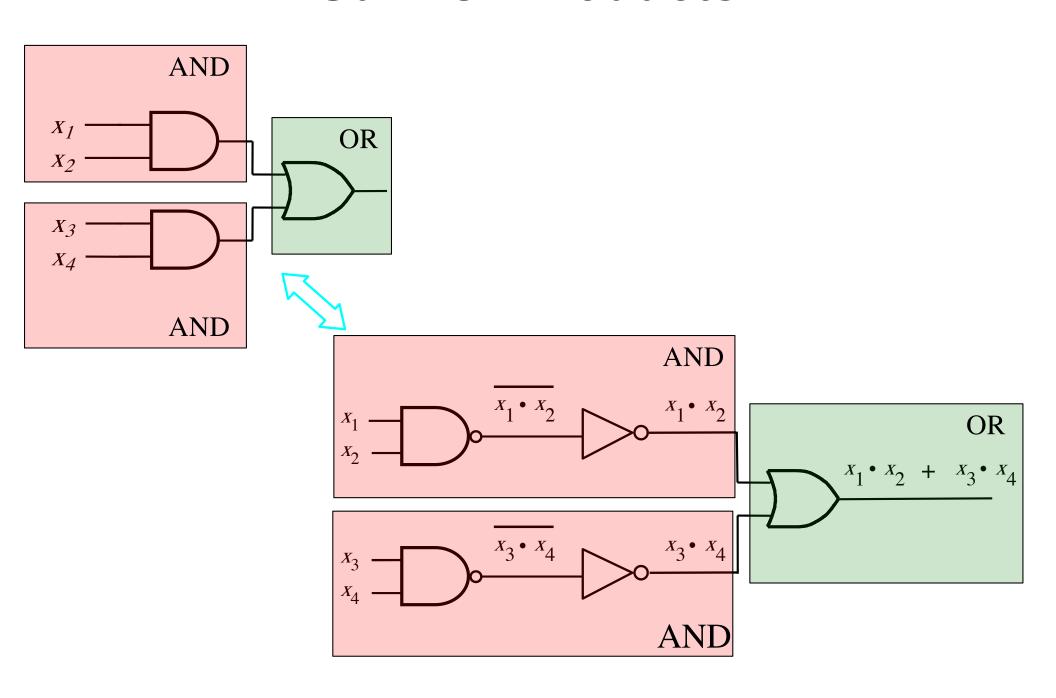

DeMorgan's Theorem

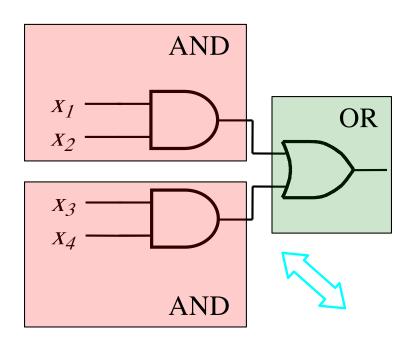

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

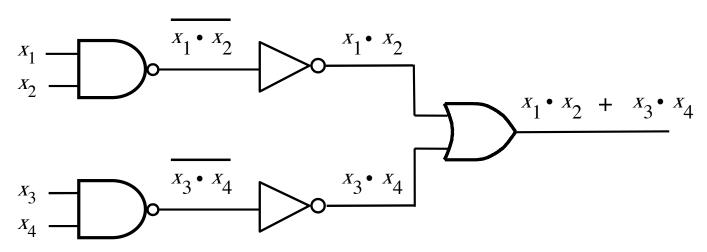

DeMorgan's Theorem

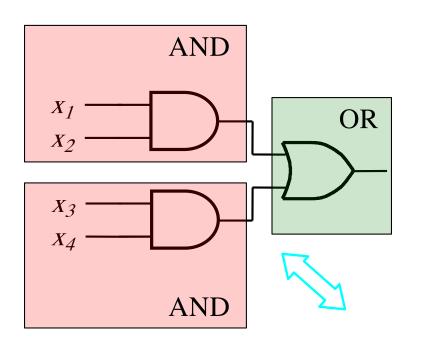

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

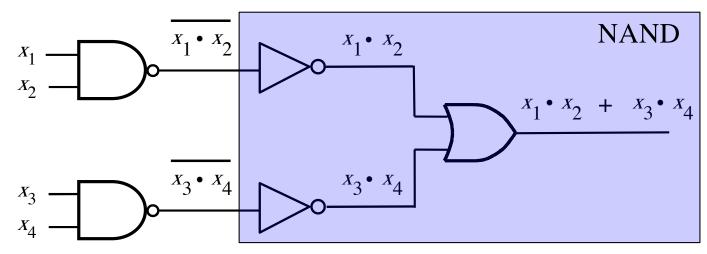

$$= \frac{x}{y} = \frac{$$

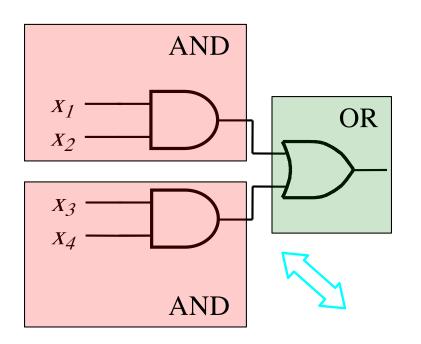


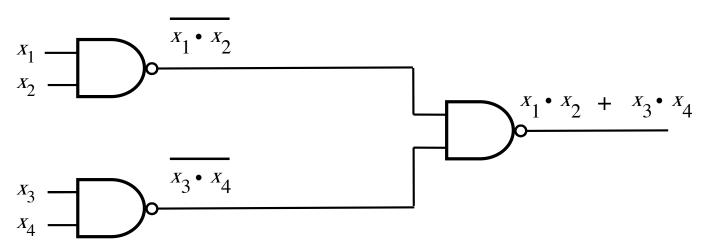


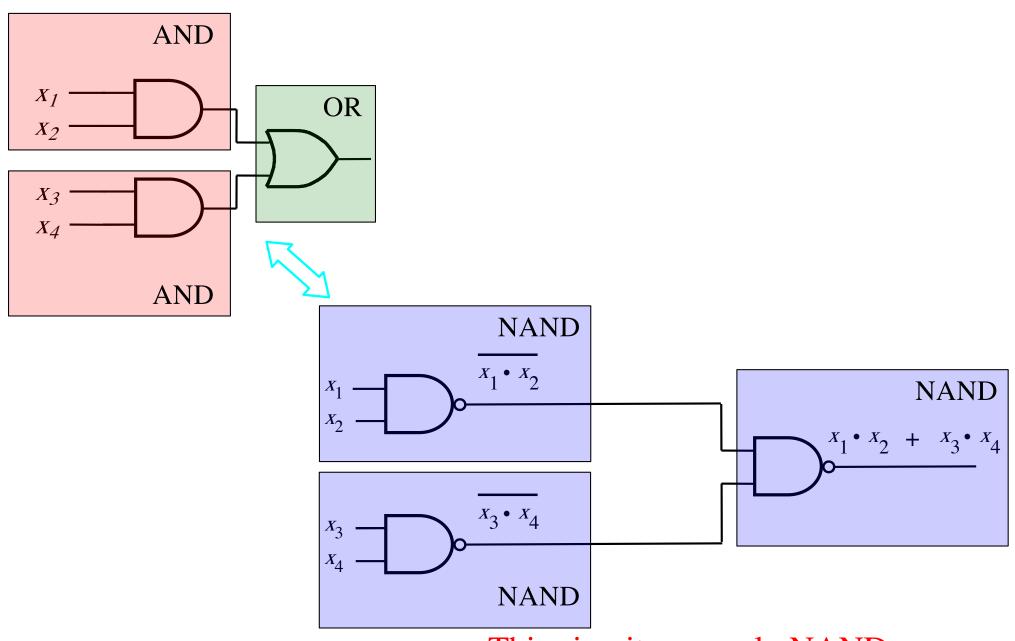


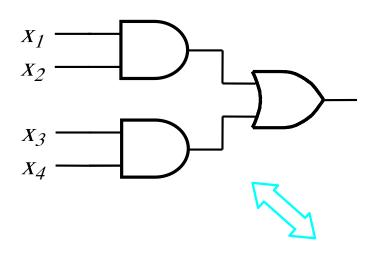


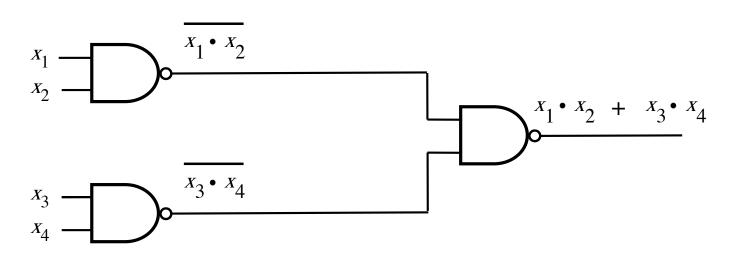




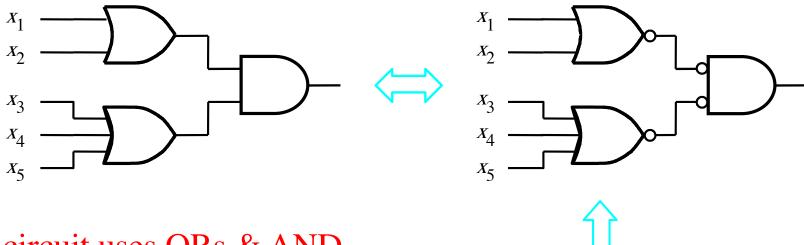


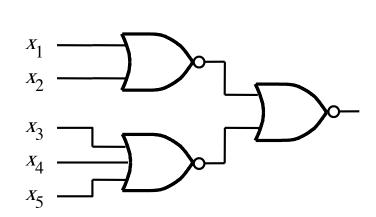






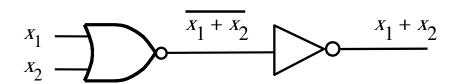
This circuit uses only NANDs




This circuit uses only NANDs

NOR-NOR Implementation of Product-of-Sums Expressions

Product-Of-Sums



This circuit uses ORs & AND

This circuit uses only NORs

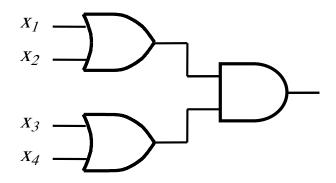
NOR followed by NOT = OR

$$X_1$$
 X_2
 $X_1 + X_2$

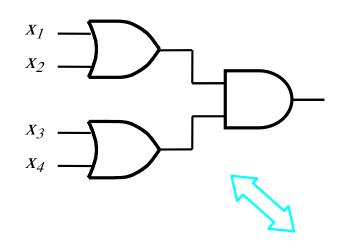
x_1	x_2	1	İ
0	0	1	0
0	1 0	0	1
1	0	0	1
1	1	0	1

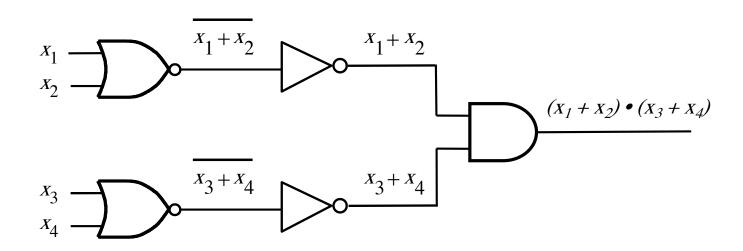
$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

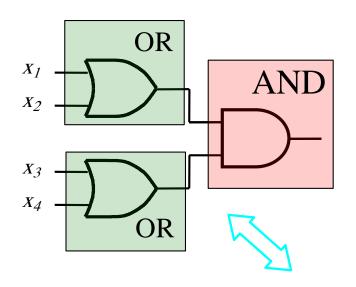
DeMorgan's Theorem

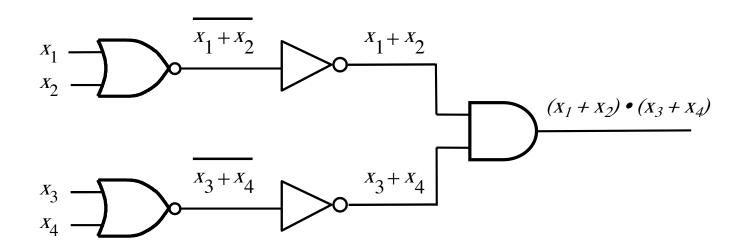

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

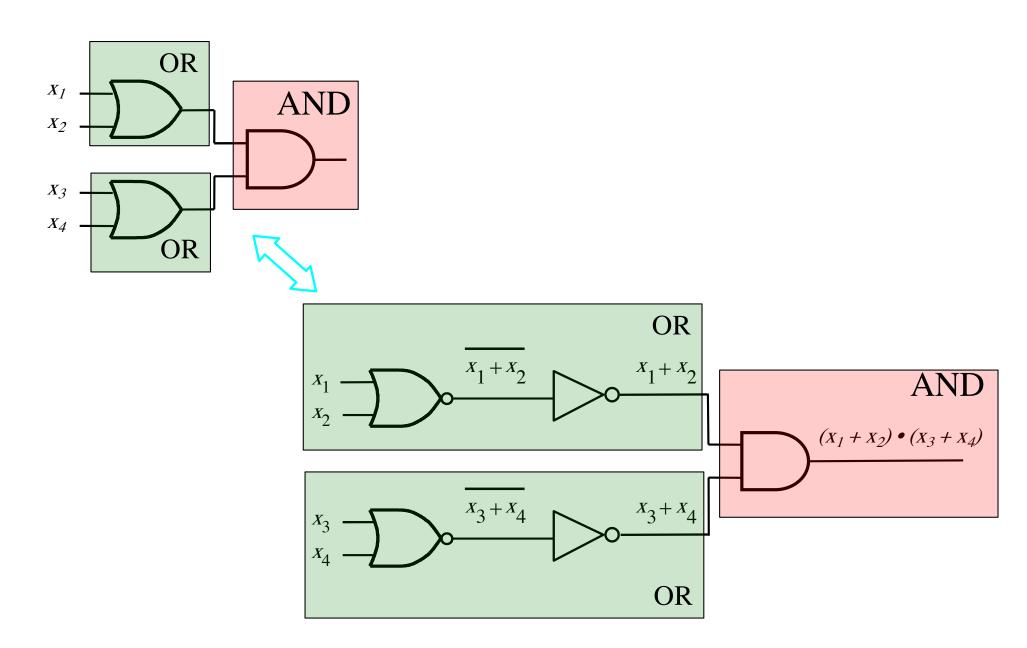
DeMorgan's Theorem

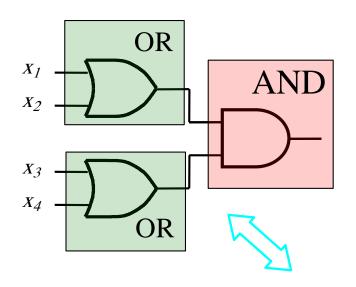

15b.
$$\frac{\overline{x} + \overline{y}}{= x} = \frac{\overline{x}}{x} \cdot \frac{\overline{y}}{y}$$

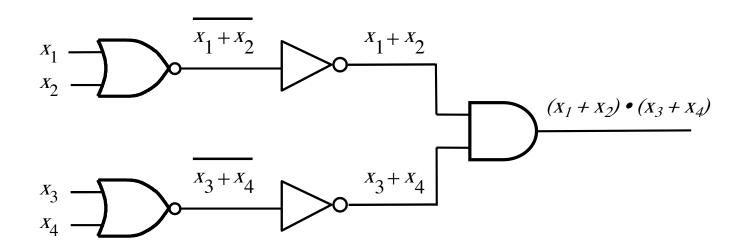

$$= \bigvee_{X \to \overline{Y}} X + \overline{Y}$$

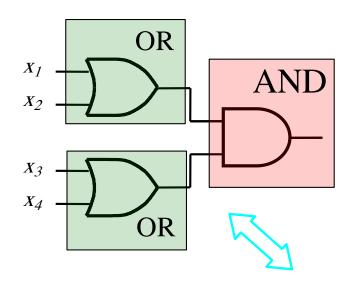

Product-Of-Sums

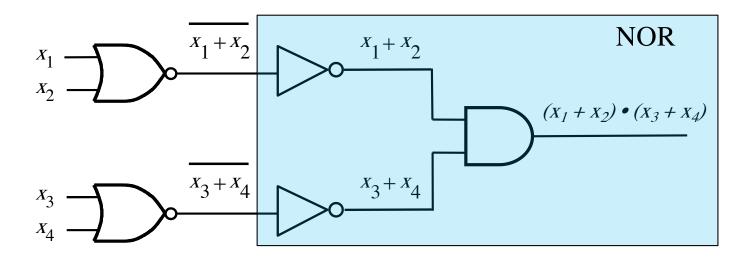


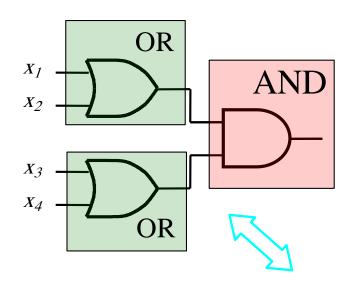

Product-Of-Sums

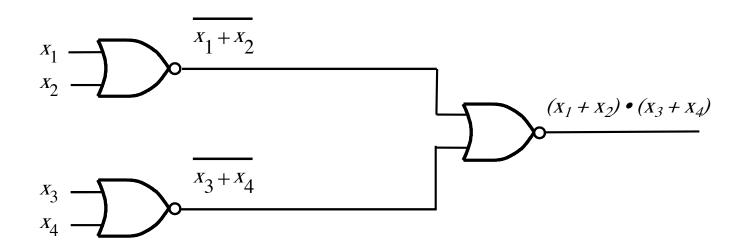


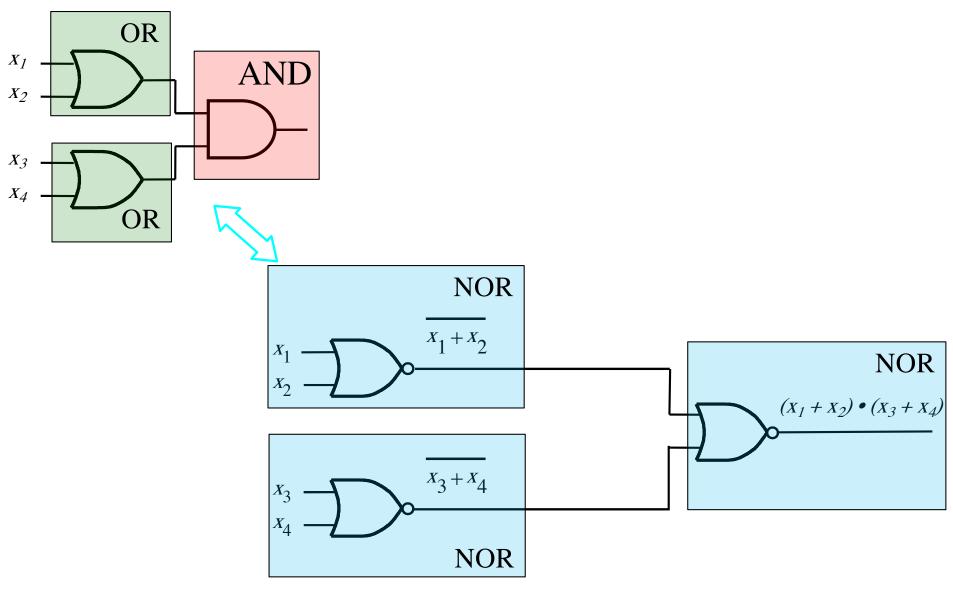


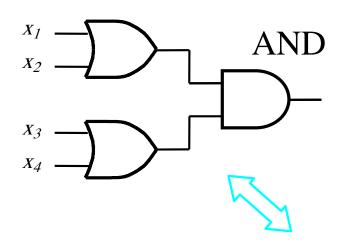


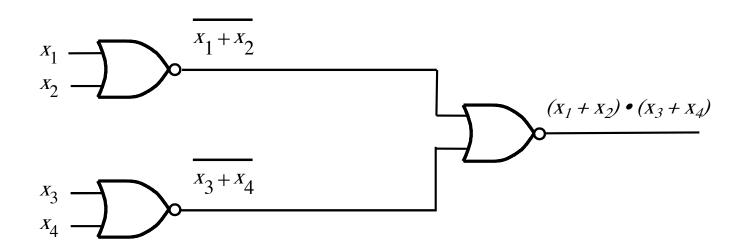












This circuit uses only NORs

This circuit uses only NORs

Another Synthesis Example

Truth table for a three-way light control

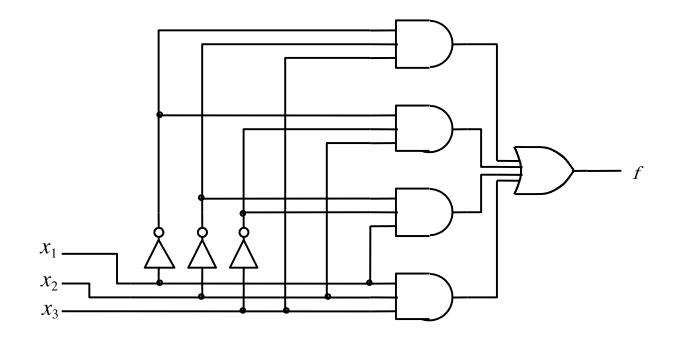
x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1


	f	<i>x</i> ₃	x_2	x_1
	0	0	0	0
$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	1	1	0	0
$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	1	0	1	0
	0	1	1	0
$x_1 x_2 x_3$	1	0	0	1
	0	1	0	1
	0	0	1	1
$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$	1	1	1	1

	-			
	f	<i>x</i> ₃	x_2	x_1
	0	0	0	0
$\overline{\mathbf{X}}_1 \overline{\mathbf{X}}_2 \mathbf{X}_3$	1	1	0	0
$\overline{\mathbf{x}}_1 \mathbf{x}_2 \overline{\mathbf{x}}_3$	1	0	1	0
	0	1	1	0
$x_1 \overline{x}_2 \overline{x}_3$	1	0	0	1
	0	1	0	1
	0	0	1	1
$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	1	1	1	1

	f	<i>x</i> ₃	x_2	x_1
	0	0	0	0
$\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2 \mathbf{x}_3$	1	1	0	0
$\overline{\mathbf{x}}_1 \ \mathbf{x}_2 \overline{\mathbf{x}}_3$	1	0	1	0
1 2 0	0	1	1	0
$x_1 \overline{x_2} \overline{x_3}$	1	0	0	1
	0	1	0	1
	0	0	1	1
$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

= $\bar{x}_1 \bar{x}_2 x_3 + \bar{x}_1 x_2 \bar{x}_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_3$

Sum-of-products realization

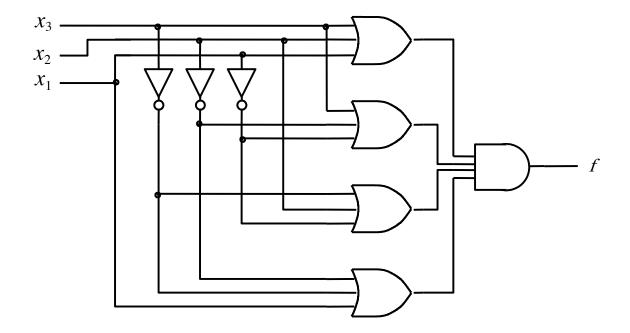
x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1


	f	x_3	x_2	x_1
$(x_1 + x_2 + x_3)$	0	0	0	0
	1	1	0	0
	1	0	1	0
$(x_1 + x_2 + x_3)$	0	1	1	0
	1	0	0	1
$(x_1 + x_2 + x_3)$	0	1	0	1
$(x_1 + x_2 + x_3)$	0	0	1	1
\ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1	1	1

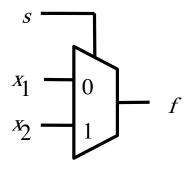
	_				-			
x_2	2	x_3		f				
0)	0		0		$(x_1 \cdot$	+ x ₂	+ x ₃
0)	1		1				
1	l	0	7	1				
1		1		0		$(x_1 \cdot$	$+\overline{\mathbf{x}}_{2}$	$+\overline{\mathbf{x}}_{3}$
0)	0		1				
0)	1		0		$(\overline{\mathbf{x}}_1 \cdot$	+ X ₂	$+\overline{\mathbf{X}}_{3}$
1	1	0		0		$(\overline{\mathbf{X}}_1 \cdot$	$+\overline{\mathbf{x}}_{2}$	+ X ₃
1	1	1		1		` 1	2	J

	f	<i>x</i> ₃	x_2	x_1
$(x_1 + x_2 + x_3)$	0	0	0	0
	1	1	0	0
	1	0	1	0
$(x_1 + \overline{x}_2 + \overline{x}_3)$	0	1	1	0
	1	0	0	1
$(\overline{\mathbf{x}}_1 + \mathbf{x}_2 + \overline{\mathbf{x}}_3)$	0	1	0	1
$(\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2 + \mathbf{x}_3)$	0	0	1	1
	1	1	1	1
	1	1	1	1

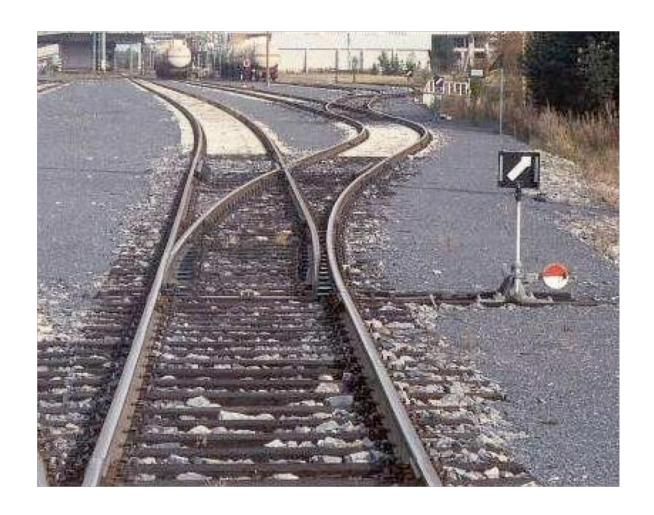
$$f = M_0 \cdot M_3 \cdot M_5 \cdot M_6$$

= $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$

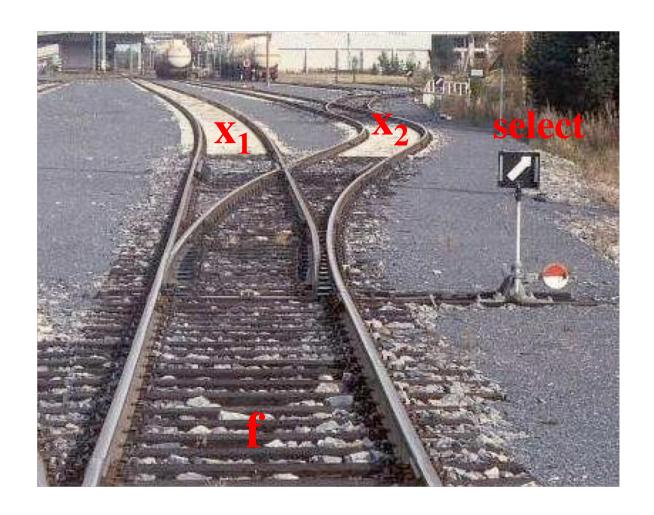
Product-of-sums realization

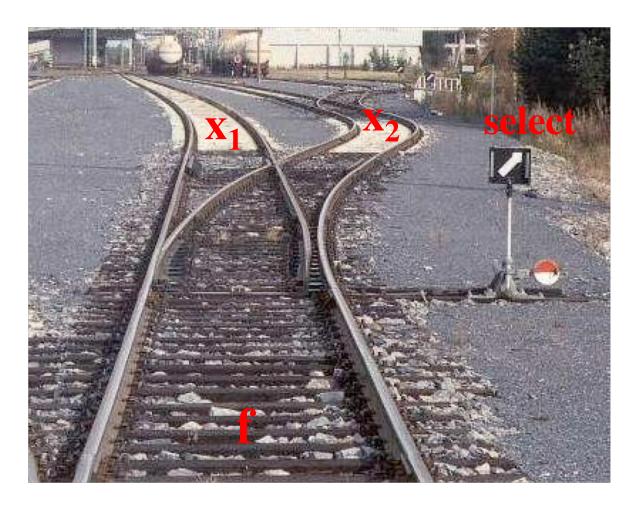


Multiplexers


2-1 Multiplexer (Definition)

- Has two inputs: x_1 and x_2
- Also has another input line s
- If s=0, then the output is equal to x_1
- If s=1, then the output is equal to x_2


Graphical Symbol for a 2-1 Multiplexer


Analogy: Railroad Switch

Analogy: Railroad Switch

Analogy: Railroad Switch

This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

$$s x_1 x_2$$

$$S X_1 X_2$$

$$S X_1 X_2$$

$$s x_1 x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

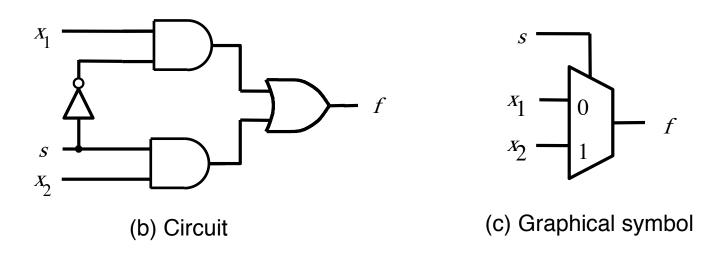
Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$


Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

Circuit for 2-1 Multiplexer

$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

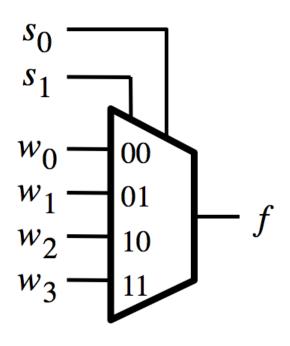
More Compact Truth-Table Representation

	Ī
$s x_1 x_2$	$f(s,x_1,x_2)$
0 0 0	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
1 1 0	0
111	1

(a)Truth table

S	$f(s,x_1,x_2)$
0	x_1
1	x_2

4-1 Multiplexer (Definition)


- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If s₁=0 and s₀=1, then the output f is equal to w₁
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If s₁=1 and s₀=1, then the output f is equal to w₃

4-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If s₁=1 and s₀=1, then the output f is equal to w₃

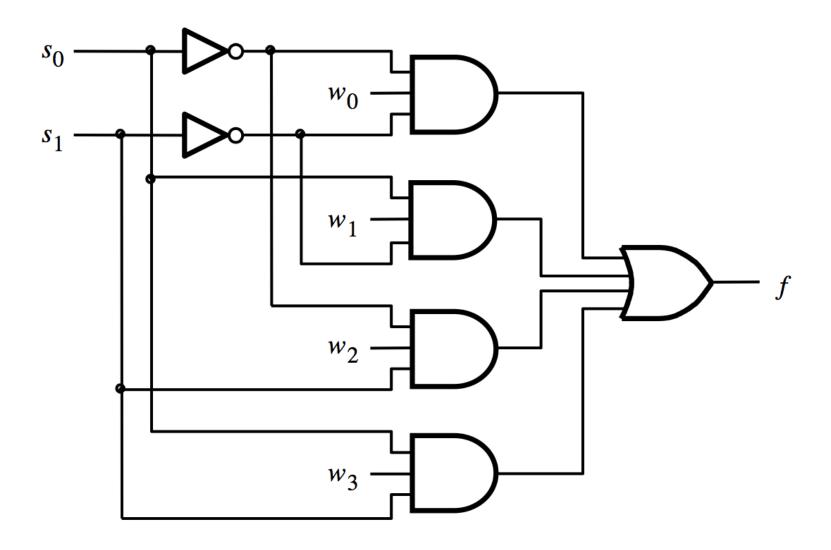
We'll talk more about this when we get to chapter 4, but here is a quick preview.

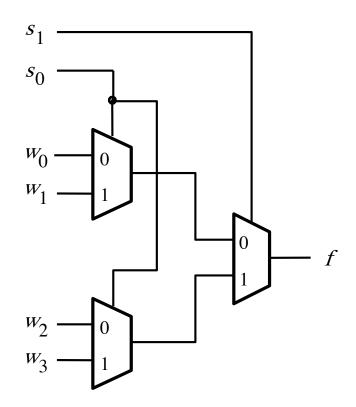
Graphical Symbol and Truth Table

<i>s</i> ₁	s_0	f
0	0	w_0
0	1	w_1
1	0	w_2
1	1	w_3

(a) Graphic symbol

(b) Truth table


S_1S_0	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀ I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0 0	0 1 0 0 0 0	0 1 0 0 0 0 0	0 1 1 0 0 0 0 0
	0 0 0 1 1	0 0 0 1	0 0 0 1	0 0 0 0 1 0
	0 0 1 0 0	0 0 1 0	1 0 0 1 0	0 0 1 0 0
	0 0 1 1 1	0 0 1 1	1 0 0 1 1	0 0 1 1 0
	0 1 0 0 0	0 1 0 0	0 0 1 0 0	1 0 1 0 0 0
	0 1 0 1 1	0 1 0 1	0 1 0 1	1 0 1 0 1 0
	0 1 1 0 0	0 1 1 0	1 0 1 1 0	1 0 1 1 0 0
	0 1 1 1 1	0 1 1 1	1 0 1 1 1	1 0 1 1 1 0
	1 0 0 0 0	1 0 0 0	0 1 0 0 0	0 1 0 0 0 1
	1 0 0 1 1	1 0 0 1	0 1 0 0 1	0 1 0 0 1 1
	1 0 1 0 0	1 0 1 0	1 1 0 1 0	0 1 0 1 0 1
	1 0 1 1 1	1 0 1 1	1 1 0 1 1	0 1 0 1 1 1
	1 1 0 0 0	1 1 0 0	0 1 1 0 0	1 1 0 0 1
	1 1 0 1 1	1 1 0 1	0 1 1 0 1	1 1 0 1 1
	1 1 1 0 0	1 1 1 0	1 1 1 0	1 1 1 0 1
	1 1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1

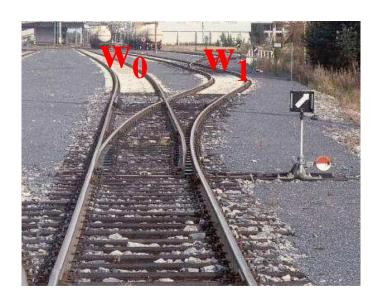

S_1S_0	I ₃ I ₂ I ₁	I_0	F	$S_1 S_0$	I_3	I ₂	I_1	I_0	F	S_1	S_0	I_3	I_2	I_1	I_0	F	S	S ₀	I_3	I_2	I_1	I_0	F
0 0	0 0 0	0	0	0 1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0
	0 0 0	1	1		0	0	0	1	0			0	0	0	1	0			0	0	0	1	0
	0 0 1	0	0		0	0	1	0	1			0	0	1	0	0			0	0	1	0	0
	0 0 1	1	1		0	0	1	1	1			0	0	1	1	0			0	0	1	1	0
	0 1 0	0	0		0	1	0	0	0			0	1	0	0	1			0	1	0	0	0
	0 1 0	1	1		0	1	0	1	0			0	1	0	1	1			0	1	0	1	0
	0 1 1	0	0		0	1	1	0	1			0	1	1	0	1			0	1	1	0	0
	0 1 1	1	1		0	1.	1	1	1			0	1	1	1	1			0	1	1	1	0
	1 0 0	0	0		1	0	0	0	0			1	0	0	0	0			1	0	0	0	1
	1 0 0	1	1		1	0	0	1	0			1	0	0	1	0			1	0	0	1	1
	1 0 1	0	0		1	0	1	0	1			1	0	1	0	0			1	0	1	0	1
	1 0 1	1	1		1	0	1	1	1			1	0	1	1	0			1	0	1	1	1
	1 1 0	0	0		1	1	0	0	0			1	1	0	0	1			1	1	0	0	1
	1 1 0	1	1		1	1	0	1	0			1	1	0	1	1			1	1	0	1	1
	1 1 1	0	0		1	1	1	0	1			1	1	1	0	1			1	1	1	0	1
	1 1 1	1	1		1	1	1	1	1			1	1	1	1	1			1	1	1	1	1

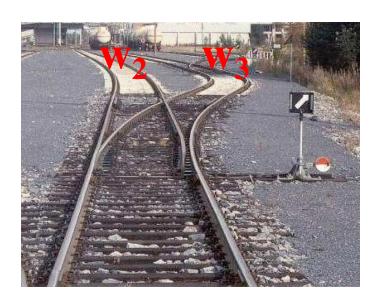
S_1S_0	I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀ I ₃	3 I ₂ I ₁	I ₀ F	S_1S_0	I ₃ I ₂ I ₁ I ₆	F S1 S	I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0	0 0 1 0	0 0	0 0	1 0	0 0 0 0	0 1 1	0 0 0 0 0
	0 0 0 1	1 0	0 0	1 0		0 0 0 1	0	0 0 0 1 0
	0 0 1 0	0 0	0 1	0 1		0 0 1 0	0	0 0 1 0 0
	0 0 1 1	1 0	0 1	1 1		0 0 1 1	0	0 0 1 1 0
	0 1 0 0	0 0	1 0	0 0		0 1 0 0	1	0 1 0 0 0
	0 1 0 1	1 0	1 0	1 0		0 1 0 1	1	0 1 0 1 0
	0 1 1 0	0 0	1 1	0 1		0 1 1 0	1	0 1 1 0 0
	0 1 1 1	1 0	1 1	1 1		0 1 1 1	1	0 1 1 1 0
	1 0 0 0	0 1	0 0	0 0		1 0 0 0	0	1 0 0 0 1
	1 0 0 1	1 1	0 0	1 0		1 0 0 1	0	1 0 0 1 1
	1 0 1 0	0 1	0 1	0 1		1 0 1 0	0	1 0 1 0 1
	1 0 1 1	1 1	0 1	1 1		1 0 1 1	0	1 0 1 1 1
	1 1 0 0	0 1	1 0	0 0		1 1 0 0	1	1 1 0 0 1
	1 1 0 1	1 1	1 0	1 0		1 1 0 1	1	1 1 0 1 1
	1 1 1 0	0 1	1 1	0 1		1 1 1 0	1	1 1 1 0 1
	1 1 1 1	1 1	1 1	1 1		1 1 1 1	1	1 1 1 1 1

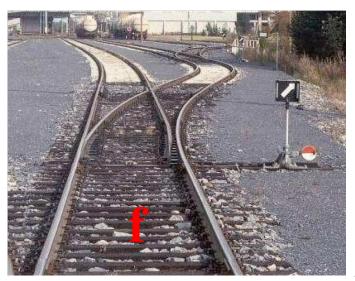
S_1S_0	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₆	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0 0	0 1 0 0 0 0	0 1 0	0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1 1	0 0 0 1	0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0 0	0 0 1 0	1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1 1	0 0 1 1	1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0 0	0 1 0 0	0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1 1	0 1 0 1	0	0 1 0 1 1	0 1 0 1 0
	0 1 1 0 0	0 1 1 0	1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1 1	0 1 1 1	1	0 1 1 1 1	0 1 1 1 0
	1 0 0 0 0	1 0 0 0	0	1 0 0 0 0	1 0 0 0 1
	1 0 0 1 1	1 0 0 1	0	1 0 0 1 0	1 0 0 1 1
	1 0 1 0 0	1 0 1 0	1	1 0 1 0 0	1 0 1 0 1
	1 0 1 1 1	1 0 1 1	1	1 0 1 1 0	1 0 1 1 1
	1 1 0 0 0	1 1 0 0	0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1 1	1 1 0 1	0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0 0	1 1 1 0	1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1 1	1 1 1 1	1	1 1 1 1 1	1 1 1 1 1

4-1 Multiplexer (SOP circuit)

Analogy: Railroad Switches

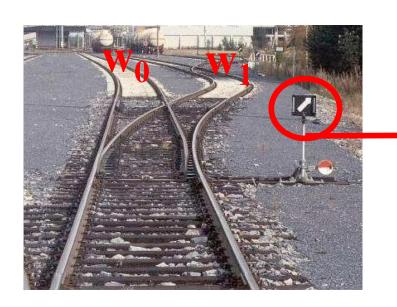


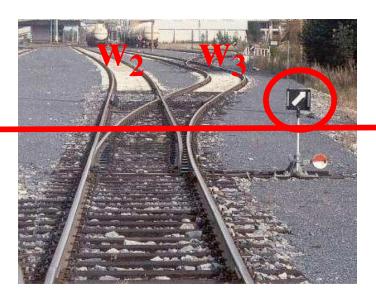




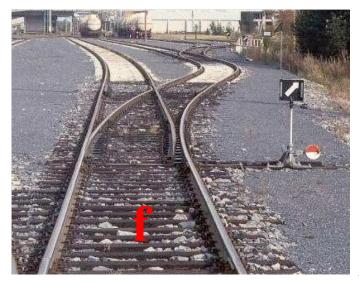
http://en.wikipedia.org/wiki/Railroad_switch]

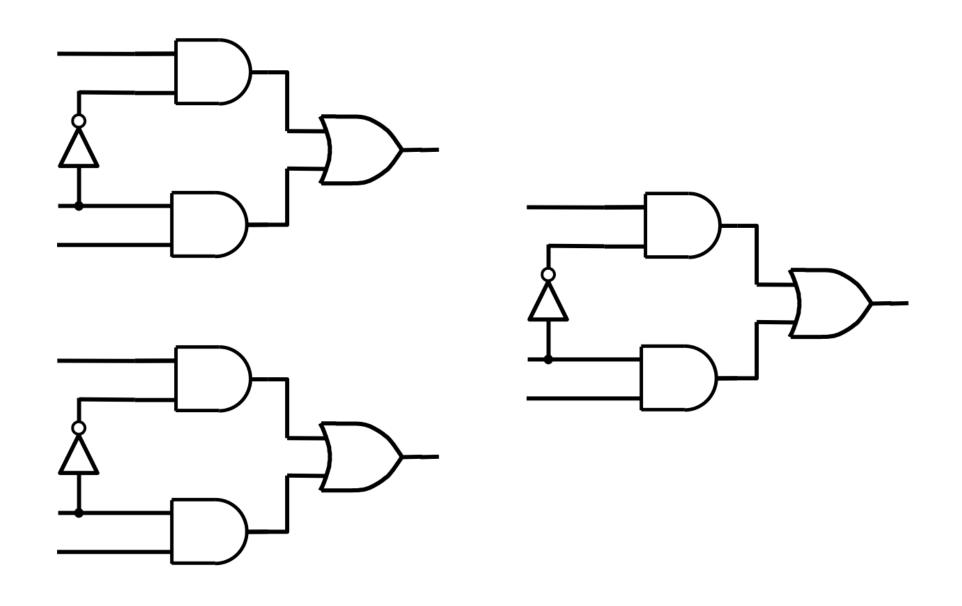
Analogy: Railroad Switches

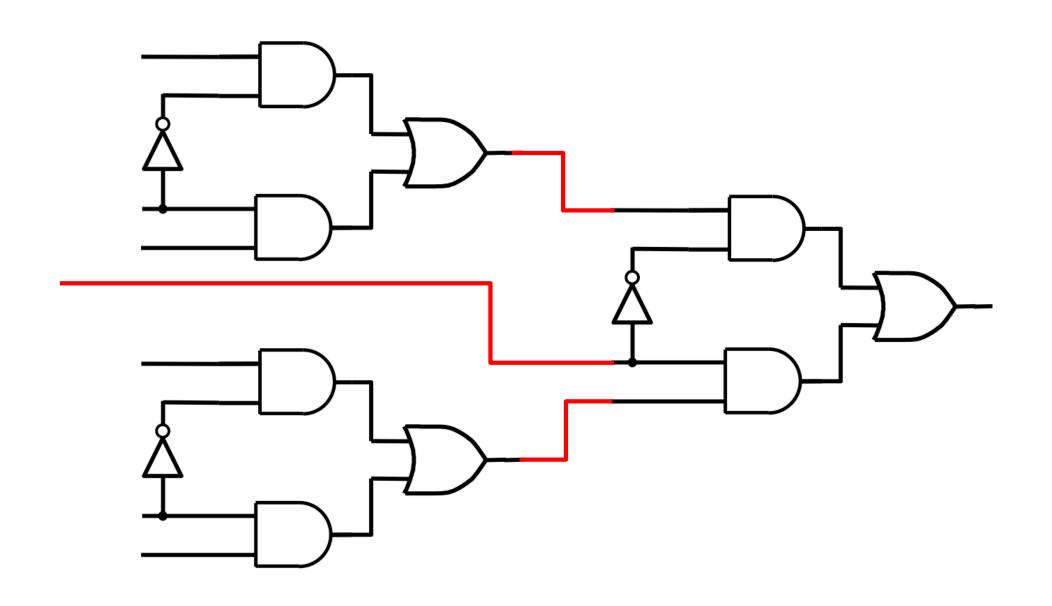


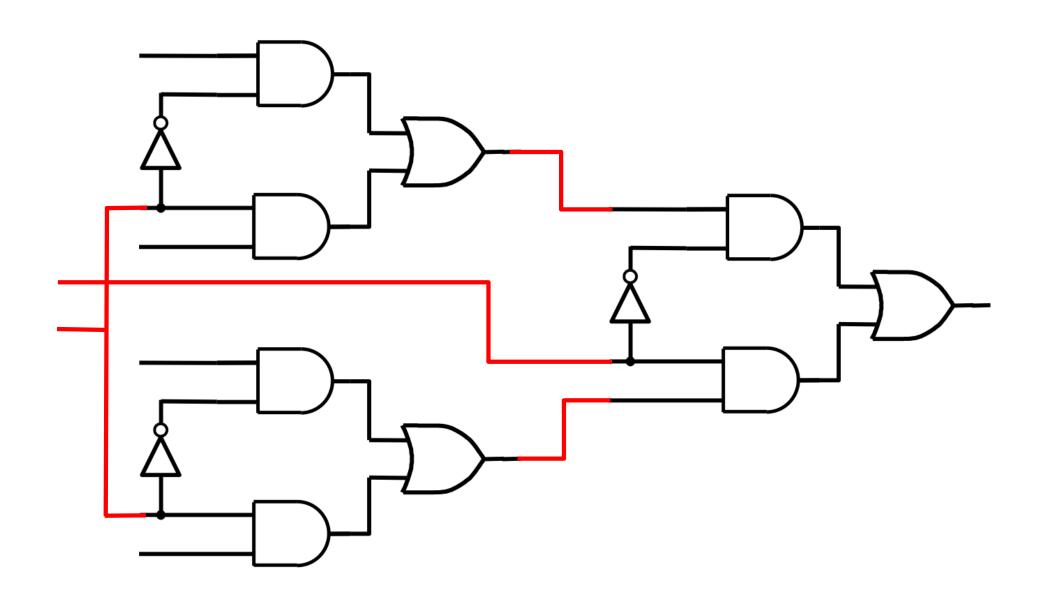


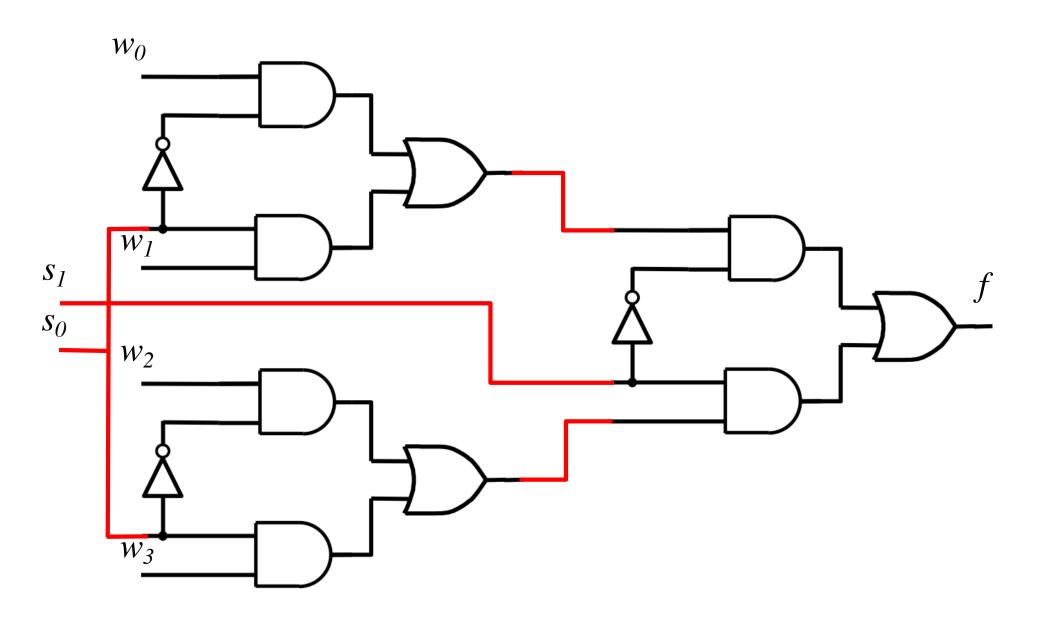
 \mathbf{S}_1


Analogy: Railroad Switches

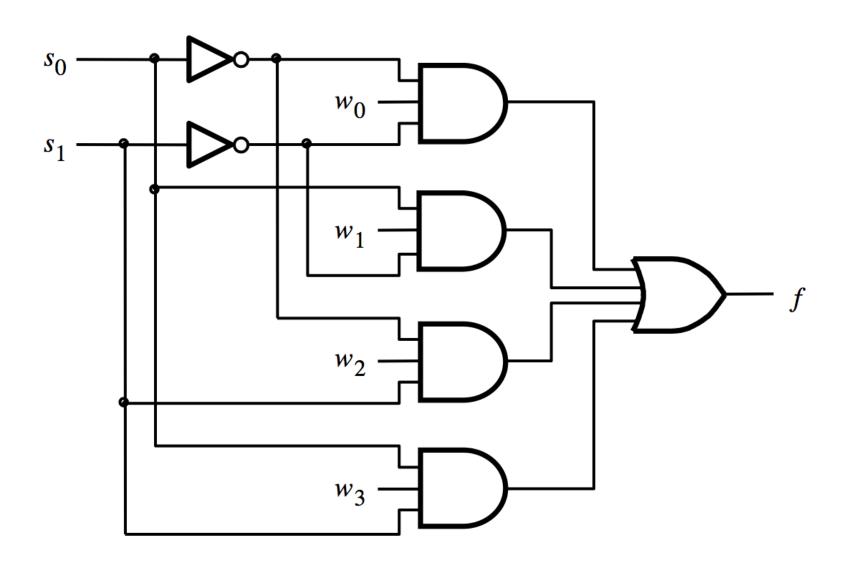


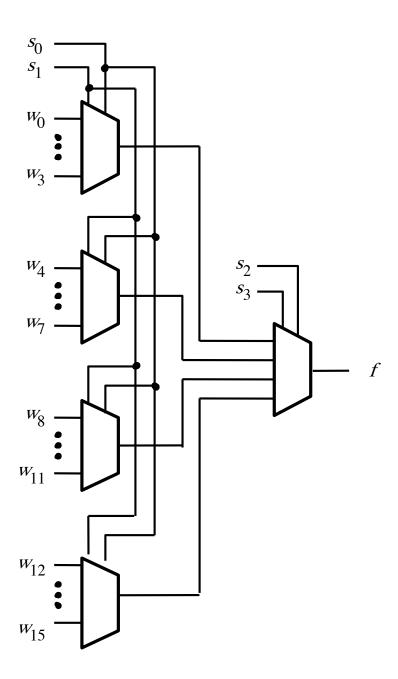

S₀

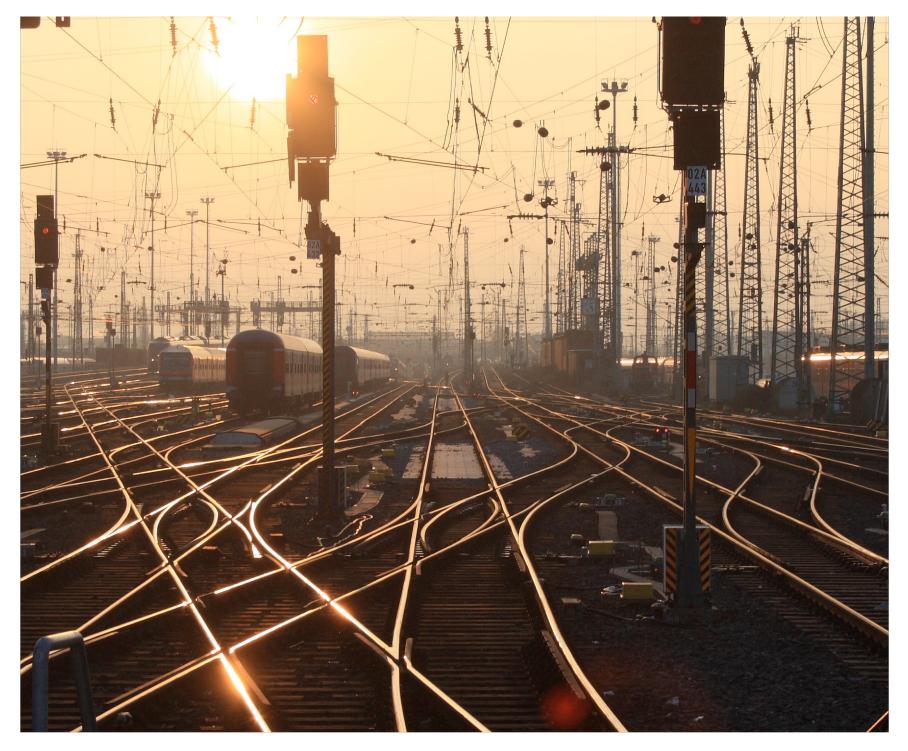

these two switches are controlled together



 \mathbf{S}_1






That is different from the SOP form of the 4-1 multiplexer shown below, which uses fewer gates

16-1 Multiplexer

[Figure 4.4 from the textbook]

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END