

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Examples of Solved Problems

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

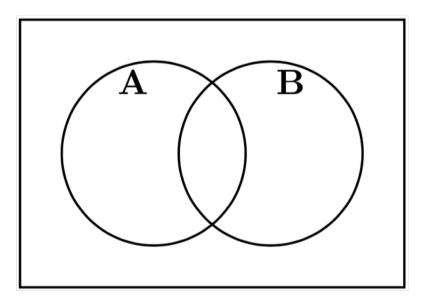
- HW5 is out
- It is due on Monday Sep 30 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, staple all of your pages together

Administrative Stuff

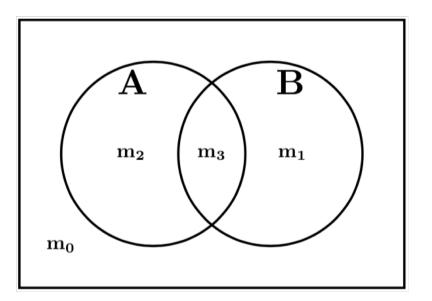
- Midterm Exam #1
- When: Friday Sep 27.
- Where: This classroom
- What: Chapter 1 and Chapter 2 plus number systems
- The exam will be closed book but open notes (you can bring up to 3 pages of handwritten notes).

Topics for the Midterm Exam

- Binary Numbers
- Octal Numbers
- Hexadecimal Numbers
- Conversion between the different number systems
- Truth Tables
- Boolean Algebra
- Logic Gates
- Circuit Synthesis with AND, OR, NOT
- Circuit Synthesis with NAND, NOR
- Converting an AND/OR/NOT circuit to NAND circuit
- Converting an AND/OR/NOT circuit to NOR circuit
- SOP and POS expressions

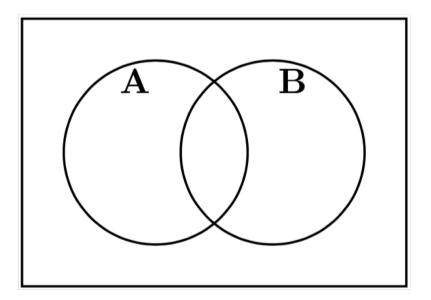

Topics for the Midterm Exam

- Mapping a Circuit to Verilog code
- Mapping Verilog code to a circuit
- Multiplexers
- Venn Diagrams
- K-maps for 2, 3, and 4 variables
- Minimization of Boolean expressions using theorems
- Minimization of Boolean expressions with K-maps
- Incompletely specified functions (with don't cares)
- Functions with multiple outputs
- Something from Star Wars

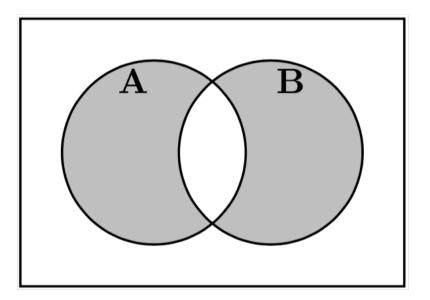

Example 0

The Link Between Truth Tables and Venn Diagrams

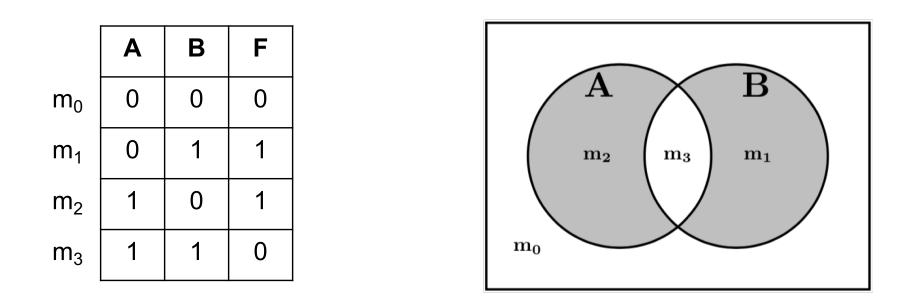
Α	В	
0	0	m ₀
0	1	m ₁
1	0	m ₂
1	1	m ₃



Α	В	
0	0	m ₀
0	1	m ₁
1	0	m ₂
1	1	m ₃

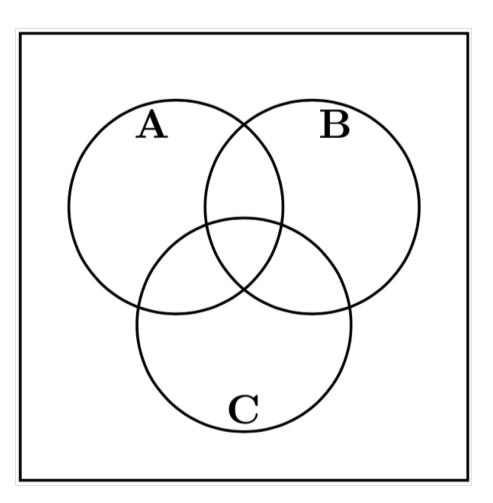

Color the Venn diagram for XOR

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

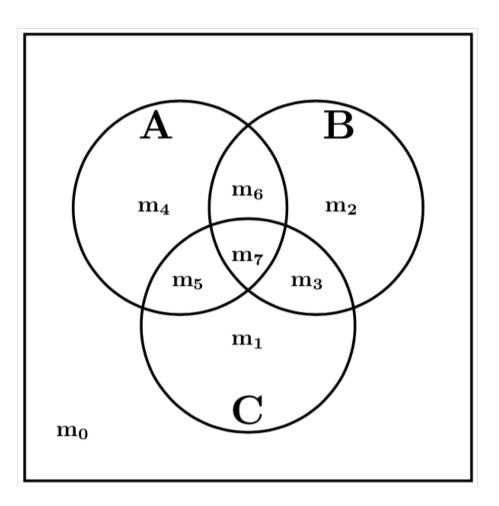


Color the Venn diagram for XOR

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

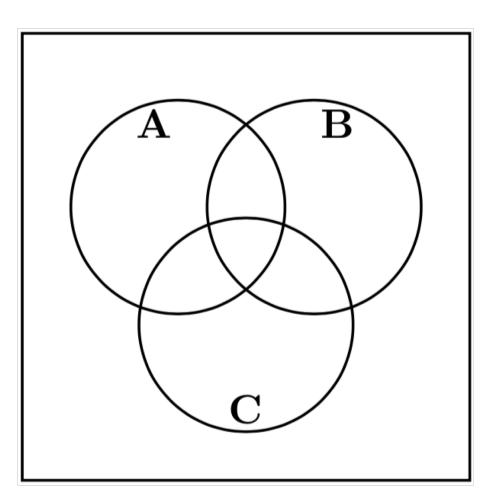


Color the Venn diagram for XOR

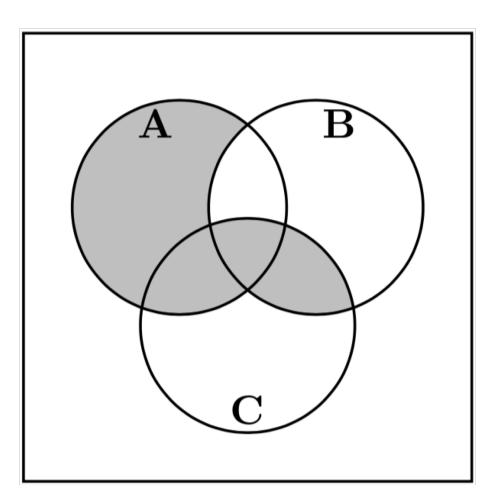


 $F = \overline{A}B + \overline{A}B$

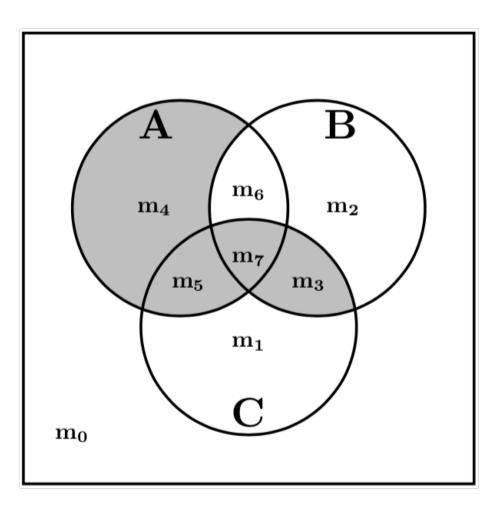
Α	В	С	
0	0	0	m ₀
0	0	1	m ₁
0	1	0	m ₂
0	1	1	m ₃
1	0	0	m ₄
1	0	1	m ₅
1	1	0	m ₆
1	1	1	m ₇



Α	В	С	
0	0	0	m ₀
0	0	1	m ₁
0	1	0	m ₂
0	1	1	m ₃
1	0	0	m ₄
1	0	1	m ₅
1	1	0	m ₆
1	1	1	m ₇

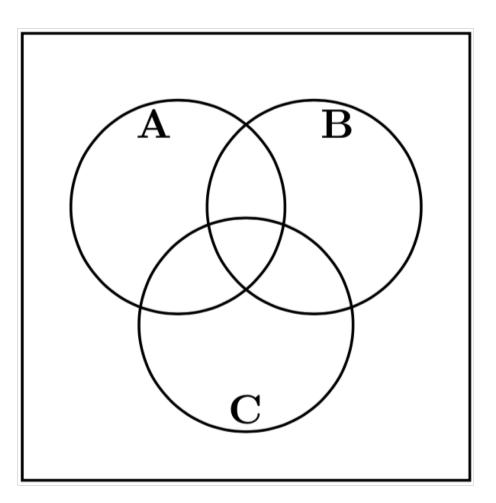

Color the Venn diagram for this function

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

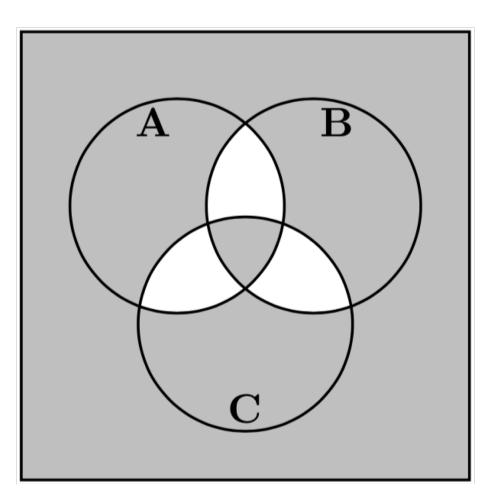


Color the Venn diagram for this function

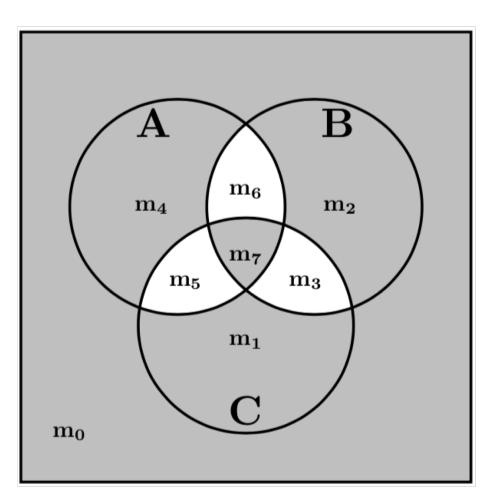
Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1



	Α	В	С	F
m ₀	0	0	0	0
m ₁	0	0	1	0
m ₂	0	1	0	0
m ₃	0	1	1	1
m ₄	1	0	0	1
m ₅	1	0	1	1
m ₆	1	1	0	0
m ₇	1	1	1	1


Color the Venn diagram for this function

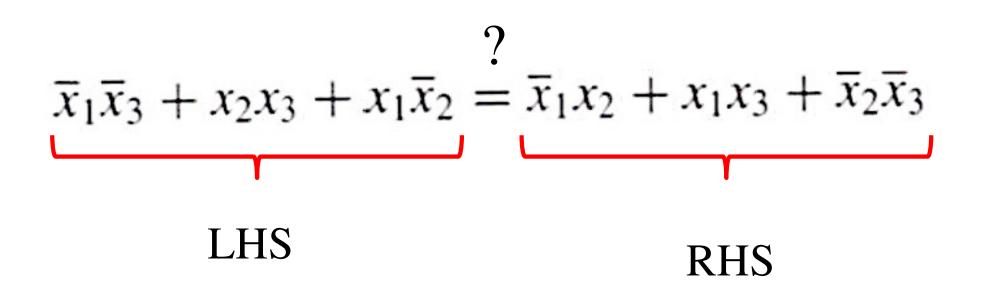
Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1



Color the Venn diagram for this function

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

	Α	В	С	F
m ₀	0	0	0	1
m ₁	0	0	1	1
m ₂	0	1	0	1
m ₃	0	1	1	0
m ₄	1	0	0	1
m ₅	1	0	1	0
m ₆	1	1	0	0
m ₇	1	1	1	1



Example 1

Determine if the following equation is valid

$$\overline{x}_1\overline{x}_3 + x_2x_3 + x_1\overline{x}_2 = \overline{x}_1x_2 + x_1x_3 + \overline{x}_2\overline{x}_3$$

 $\frac{?}{\bar{x}_1\bar{x}_3 + x_2x_3 + x_1\bar{x}_2} = \bar{x}_1x_2 + x_1x_3 + \bar{x}_2\bar{x}_3$

Left-Hand Side (LHS)

Row number	x_1	x_2	x_3	$\overline{x_1}\overline{x_3}$	$x_2 x_3$	$x_1 \overline{x_2}$	f
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ $				
$\begin{array}{c} 6 \\ 7 \end{array}$	1	1	1				

Left-Hand Side (LHS)

Row number	x_1	x_2	x_3	$\overline{x_1}\overline{x_3}$	$x_2 x_3$	$x_1 \overline{x_2}$	f
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	

Left-Hand Side (LHS)

Row number	x_1	x_2	x_3	$\overline{x_1}\overline{x_3}$	$x_2 x_3$	$\overline{x_1 x_2}$	f
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	0 0 0 0 1 1 1	1 0 1 1 1 1
0 7		1	1	0	0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{vmatrix} 0\\1 \end{vmatrix}$

Right-Hand Side (RHS)

Row number	x_1	x_2	x_3	$\overline{x_1}x_2$	x_1x_3	$\overline{x_2} \ \overline{x_3}$	f
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$				
$\frac{1}{7}$	1	1	1				

Right-Hand Side (RHS)

Row number	x_1	x_2	x_3	$\overline{x_1}x_2$	x_1x_3	$\overline{x_2} \ \overline{x_3}$	f
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} $	$egin{array}{ccc} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{array}{c} 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array} $	

Right-Hand Side (RHS)

Row number	x_1	x_2	x_3	$\overline{x_1}x_2$	x_1x_3	$\overline{x_2} \ \overline{x_3}$	f
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$egin{array}{ccc} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	$egin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{array}$

Example 2

Design the minimum-cost product-of-sums expression for the function

 $f(x_1, x_2, x_3) = \Sigma m(0, 2, 4, 5, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0\\0\\0\\0\\1\\1\\1\\1\\1\end{array} \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$\begin{array}{c} 0 \\ 1 \\ 2 \\ \end{array}$	0 0 0	0 0 1	0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$
$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\end{array}$	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	1 0 0 1 1	1 0 1 0 1	$egin{array}{llllllllllllllllllllllllllllllllllll$	$M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

The function is 1 for these rows

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	$ \begin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 x_3 \\ m_6 = x_1 x_2 \overline{x}_3 \end{array} $	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$
7	1	1	1	$\begin{array}{c} m_6 = x_1 x_2 x_3 \\ m_7 = x_1 x_2 x_3 \end{array}$	$M_6 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

The function is 1 for these rows The function is 0 for these rows

Two different ways to specify the same function f of three variables

 $f(x_1, x_2, x_3) = \Sigma m(0, 2, 4, 5, 6, 7)$

 $f(x_1, x_2, x_3) = \prod M(1, 3)$

The POS Expression

$$M_1 = x_1 + x_2 + \overline{x}_3 \qquad \qquad M_3 = x_1 + \overline{x}_2 + \overline{x}_3$$

$$f(x_1, x_2, x_3) = \Pi M(1, 3)$$

= M₁• M₃
= (x₁ + x₂ + $\overline{x_3}$)•(x₁ + $\overline{x_2}$ + $\overline{x_3}$)

The Minimum POS Expression

$$f(x_1, x_2, x_3) = (x_1 + x_2 + \overline{x_3}) \bullet (x_1 + \overline{x_2} + \overline{x_3})$$
$$= (x_1 + \overline{x_3} + \overline{x_2}) \bullet (x_1 + \overline{x_3} + \overline{x_2})$$
$$= (x_1 + \overline{x_3})$$

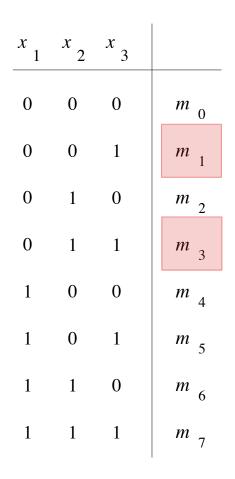
Hint: Use the following Boolean Algebra theorem

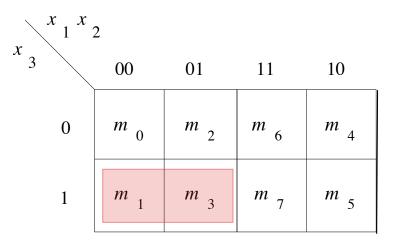
14b. $(x + y) \cdot (x + \overline{y}) = x$

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	
0	0	0	m ₀
0	0	1	<i>m</i> ₁
0	1	0	m 2
0	1	1	<i>m</i> ₃
1	0	0	m 4
1	0	1	m ₅
1	1	0	m ₆
1	1	1	m 7

x_3 x_1 x_2	2 00	01	11	10
\sim	00	01	11	10
0	m ₀	m ₂	m ₆	m 4
1	<i>m</i> 1	m ₃	m ₇	m ₅

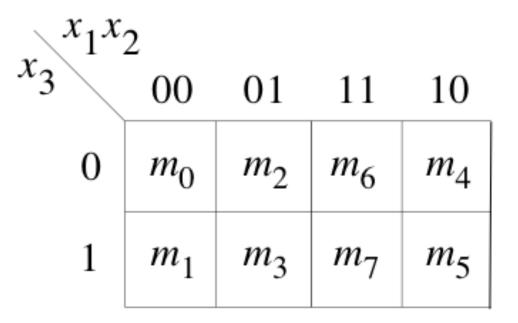
(b) Karnaugh map

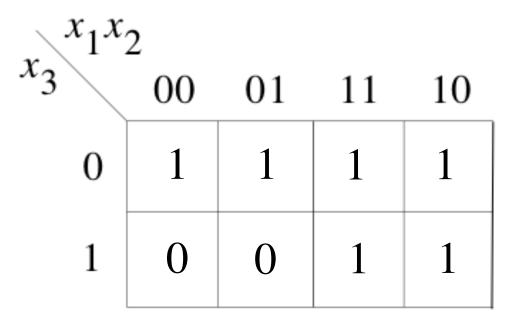

(a) Truth table

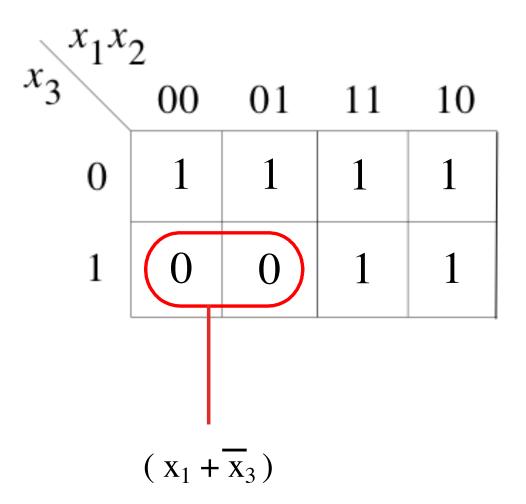

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	
0	0	0	<i>m</i> ₀
0	0	1	<i>m</i> ₁
0	1	0	<i>m</i> 2
0	1	1	<i>m</i> ₃
1	0	0	<i>m</i> 4
1	0	1	m 5
1	1	0	m ₆
1	1	1	m 7

x 1 x 2						
<i>x</i> 3	00	01	11	10		
0	т ₀	m ₂	т ₆	m _4		
1	m ₁	m ₃	m ₇	m ₅		

(b) Karnaugh map


(a) Truth table





(b) Karnaugh map

(a) Truth table

Example 3

Problem: A circuit that controls a given digital system has three inputs: x_1 , x_2 , and x_3 . It has to recognize three different conditions:

- Condition A is true if x_3 is true and either x_1 is true or x_2 is false
- Condition *B* is true if x_1 is true and either x_2 or x_3 is false
- Condition C is true if x_2 is true and either x_1 is true or x_3 is false

The control circuit must produce an output of 1 if at least two of the conditions A, B, and C are true. Design the simplest circuit that can be used for this purpose.

Condition A

Condition A is true if x_3 is true and either x_1 is true or x_2 is false

Condition A

Condition A is true if x_3 is true and either x_1 is true or x_2 is false

$A = x_3(x_1 + \bar{x}_2) = x_3x_1 + x_3\bar{x}_2$

Condition B

Condition *B* is true if x_1 is true and either x_2 or x_3 is false

Condition B

Condition B is true if x_1 is true and either x_2 or x_3 is false

$B = x_1(\bar{x}_2 + \bar{x}_3) = x_1\bar{x}_2 + x_1\bar{x}_3$

Condition C

Condition C is true if x_2 is true and either x_1 is true or x_3 is false

Condition C

Condition C is true if x_2 is true and either x_1 is true or x_3 is false

$C = x_2(x_1 + \overline{x}_3) = x_2x_1 + x_2\overline{x}_3$

The output of the circuit can be expressed as f = AB + AC + BC

 $AB = (x_3x_1 + x_3\overline{x}_2)(x_1\overline{x}_2 + x_1\overline{x}_3)$ = $x_3x_1x_1\overline{x}_2 + x_3x_1x_1\overline{x}_3 + x_3\overline{x}_2x_1\overline{x}_2 + x_3\overline{x}_2x_1\overline{x}_3$ = $x_3x_1\overline{x}_2 + 0 + x_3\overline{x}_2x_1 + 0$ = $x_1\overline{x}_2x_3$

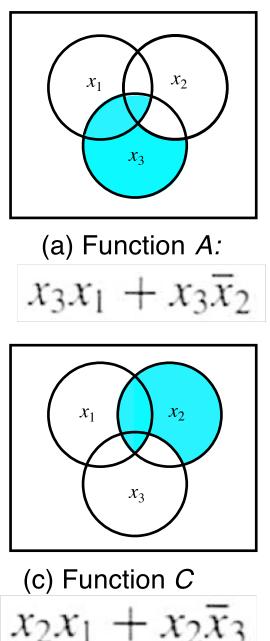
The output of the circuit can be expressed as f = AB + AC + BC

- $AC = (x_3x_1 + x_3\overline{x}_2)(x_2x_1 + x_2\overline{x}_3)$ = $x_3x_1x_2x_1 + x_3x_1x_2\overline{x}_3 + x_3\overline{x}_2x_2x_1 + x_3\overline{x}_2x_2\overline{x}_3$ = $x_3x_1x_2 + 0 + 0 + 0$
 - $= x_1 x_2 x_3$

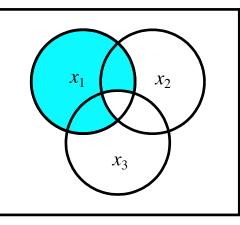
The output of the circuit can be expressed as f = AB + AC + BC

 $BC = (x_1 \overline{x}_2 + x_1 \overline{x}_3)(x_2 x_1 + x_2 \overline{x}_3)$ = $x_1 \overline{x}_2 x_2 x_1 + x_1 \overline{x}_2 x_2 \overline{x}_3 + x_1 \overline{x}_3 x_2 x_1 + x_1 \overline{x}_3 x_2 \overline{x}_3$ = $0 + 0 + x_1 \overline{x}_3 x_2 + x_1 \overline{x}_3 x_2$ = $x_1 x_2 \overline{x}_3$

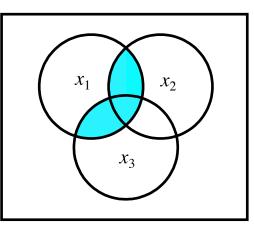
Finally, we get


$$f = x_1 \overline{x}_2 x_3 + x_1 x_2 x_3 + x_1 x_2 \overline{x}_3$$

= $x_1 (\overline{x}_2 + x_2) x_3 + x_1 x_2 (x_3 + \overline{x}_3)$
= $x_1 x_3 + x_1 x_2$
= $x_1 (x_3 + x_2)$

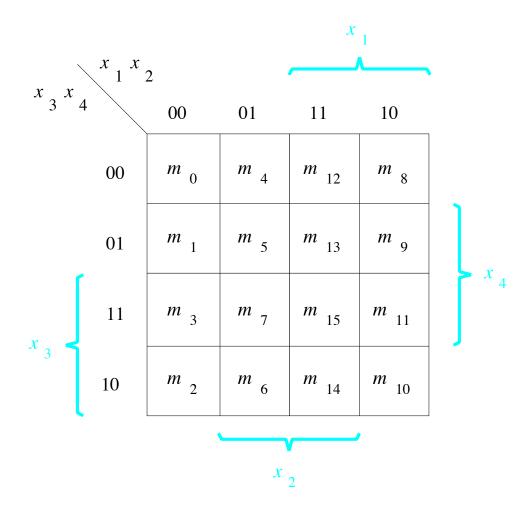

Example 4

Solve the previous problem using Venn diagrams.

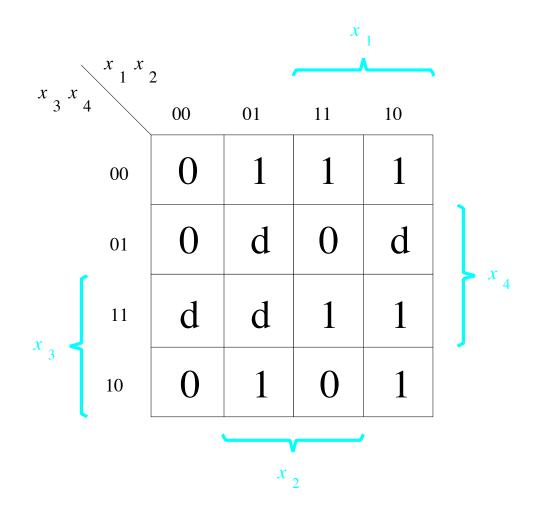

Venn Diagrams

(find the areas that are shaded at least two times)

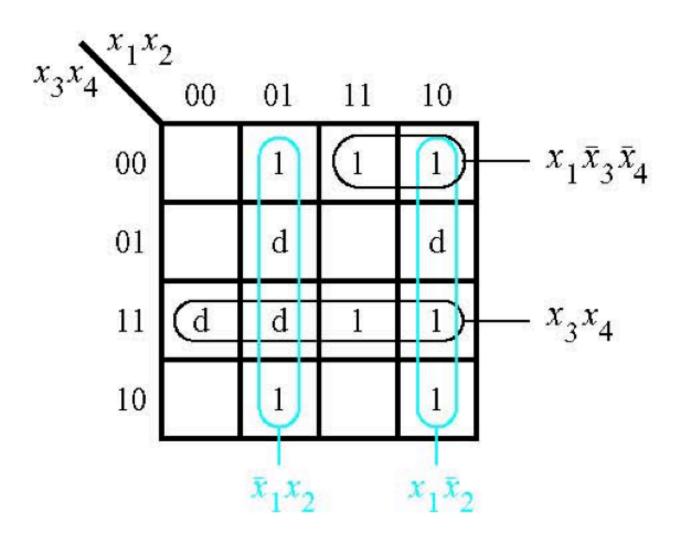
(b) Function B $x_1\overline{x}_2 + x_1\overline{x}_3$

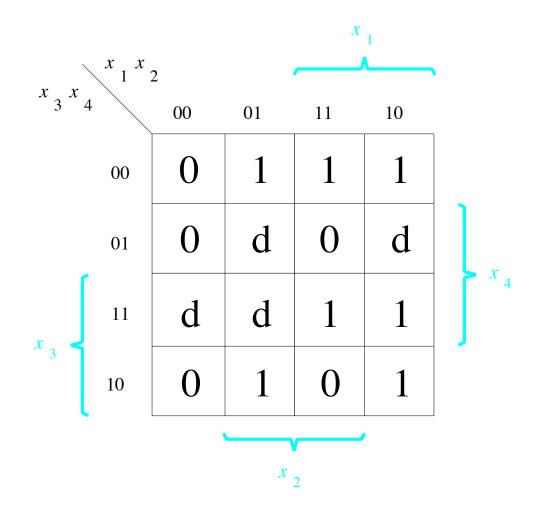

(d) Function f $x_1(x_3 + x_2)$

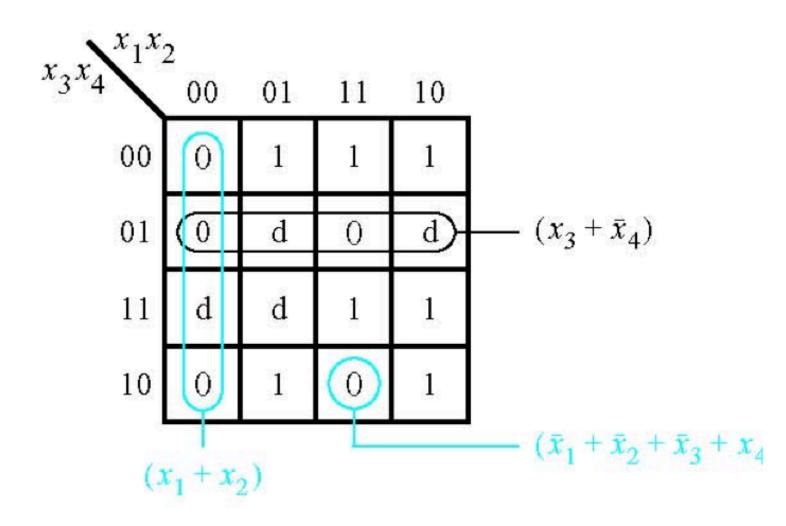
[Figure 2.66 from the textbook]


Example 5

Design the minimum-cost SOP and POS expression for the function


Let's Use a K-Map

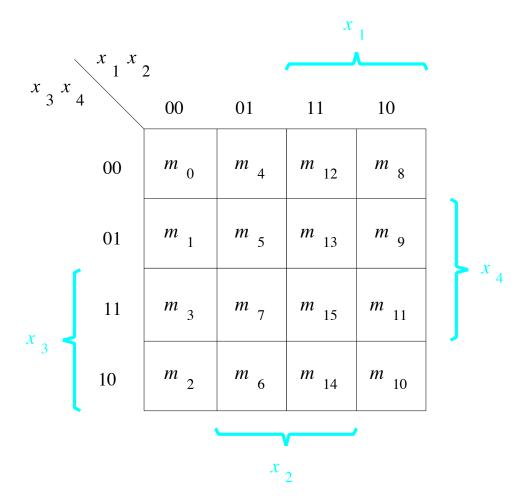

Let's Use a K-Map


The SOP Expression

What about the POS Expression?

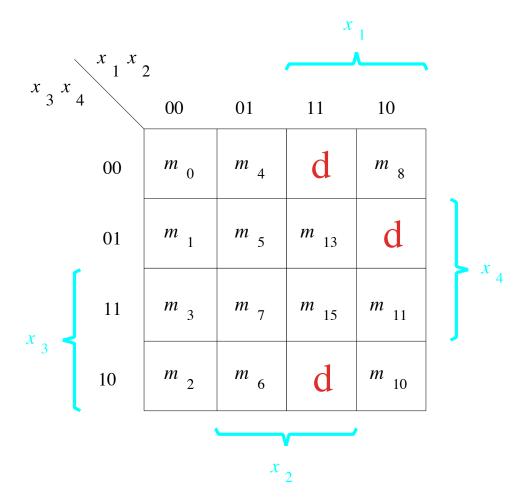
The POS Expression

Example 6

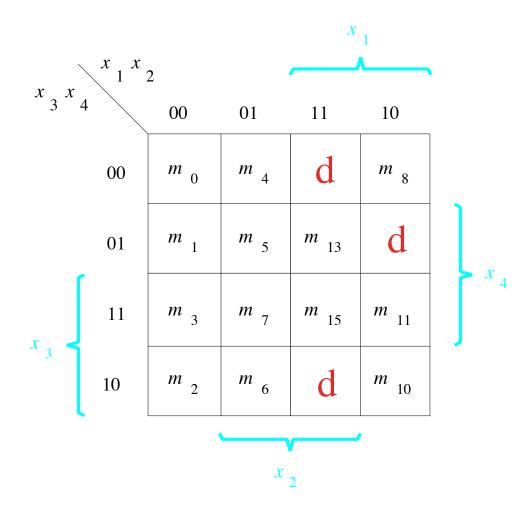

Use K-maps to find the minimum-cost SOP and POS expression for the function

 $f(x_1, \ldots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$

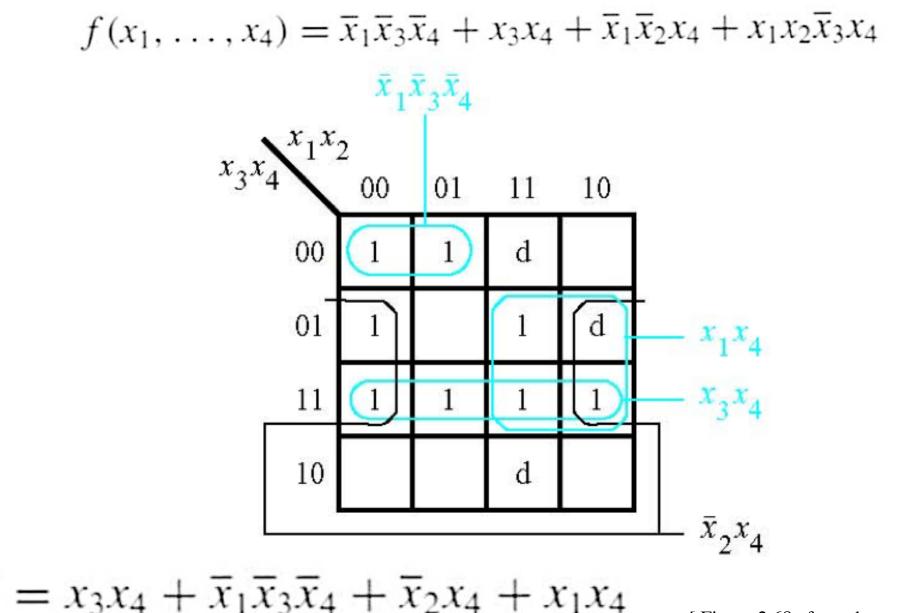
assuming that there are also don't-cares defined as $D = \sum (9, 12, 14)$.


Let's map the expression to the K-Map

$$f(x_1, \dots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$
$$D = \sum (9, 12, 14).$$

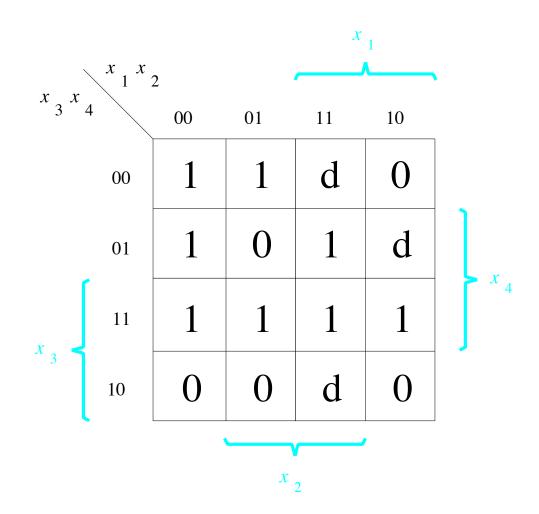

Let's map the expression to the K-Map

$$f(x_1, \dots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$$
$$D = \sum (9, 12, 14).$$

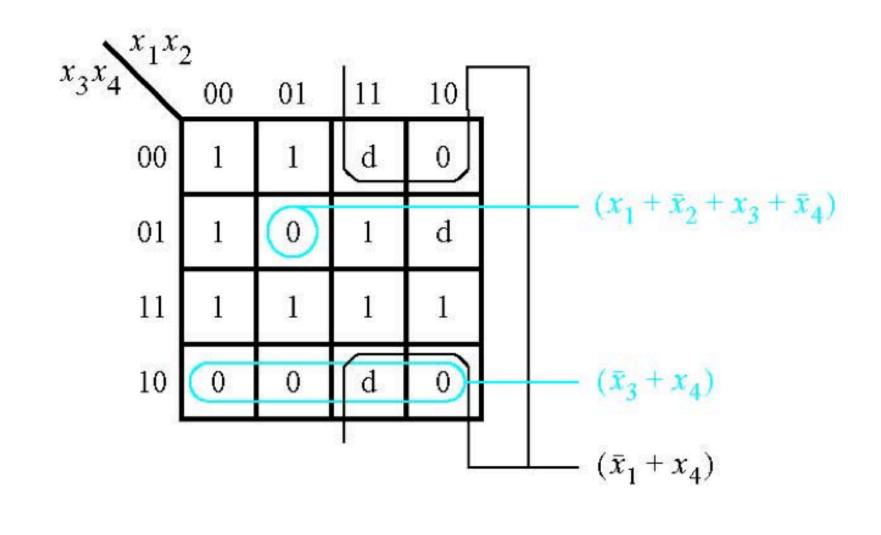


Let's map the expression to the K-Map

 $f(x_1, \ldots, x_4) = \overline{x}_1 \overline{x}_3 \overline{x}_4 + x_3 x_4 + \overline{x}_1 \overline{x}_2 x_4 + x_1 x_2 \overline{x}_3 x_4$



The SOP Expression



[Figure 2.68a from the textbook]

What about the POS Expression?

The POS Expression

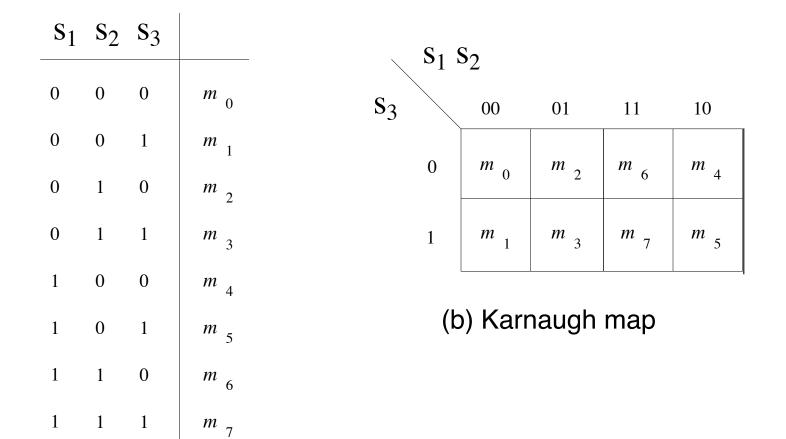
 $f = (\bar{x}_3 + x_4)(\bar{x}_1 + x_4)(x_1 + \bar{x}_2 + x_3 + \bar{x}_4)$

[Figure 2.68b from the textbook]

Example 7

Derive the minimum-cost SOP expression for

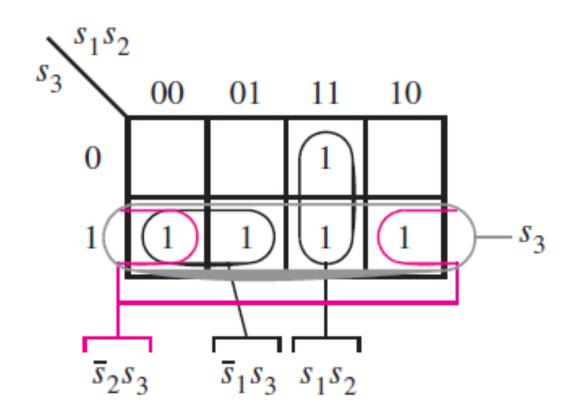
$$f = s_3(\bar{s}_1 + \bar{s}_2) + s_1 s_2$$


First, expand the expression using property 12a

$$f = s_3(\bar{s}_1 + \bar{s}_2) + s_1 s_2$$

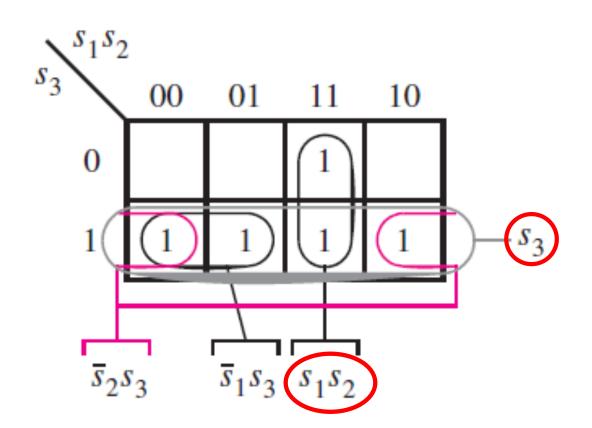
 $f = \bar{s}_1 s_3 + \bar{s}_2 s_3 + s_1 s_2$

Construct the K-Map for this expression


$$f = \bar{s}_1 s_3 + \bar{s}_2 s_3 + s_1 s_2$$

(a) Truth table

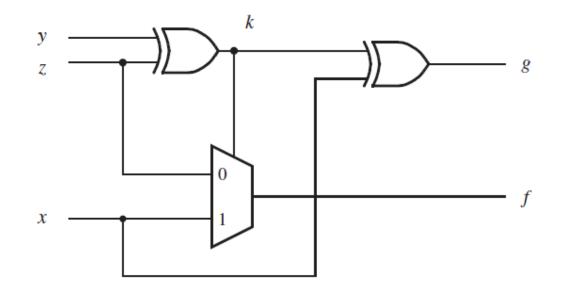
Construct the K-Map for this expression


$$f = \overline{s}_1 s_3 + \overline{s}_2 s_3 + s_1 s_2$$

[Figure 2.69 from the textbook]

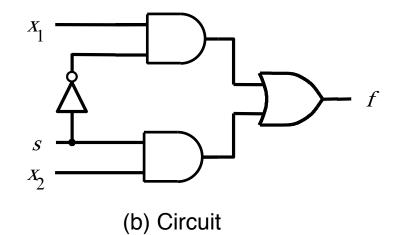
Construct the K-Map for this expression

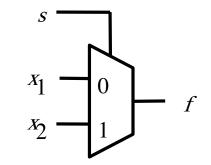
$$f = \overline{s}_1 s_3 + \overline{s}_2 s_3 + s_1 s_2$$


Simplified Expression: $f = s_3 + s_1 s_2$

[Figure 2.69 from the textbook]

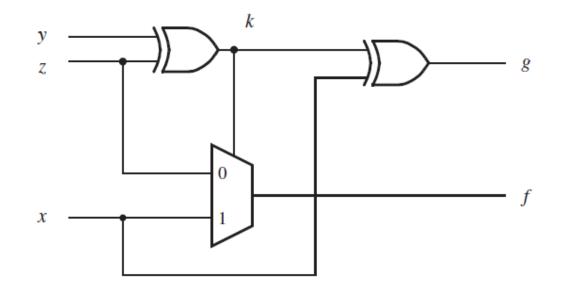
Example 8


Write the Verilog code for the following circuit ...


Logic Circuit

[Figure 2.70 from the textbook]

Circuit for 2-1 Multiplexer



(c) Graphical symbol

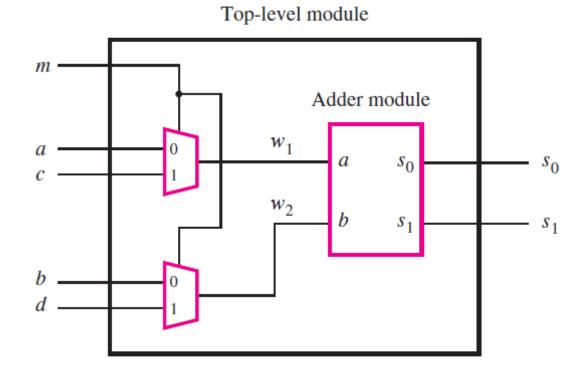
$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

[Figure 2.33b-c from the textbook]

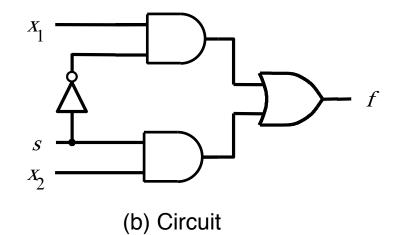
Logic Circuit vs Verilog Code

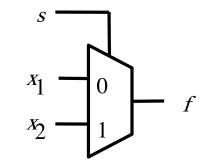
module f_g (x, y, z, f, g);
input x, y, z;
output f, g;
wire k;

assign $k = y^{k} z;$ **assign** $g = k^{k} x;$ **assign** $f = (\sim k \& z) | (k \& x);$


endmodule

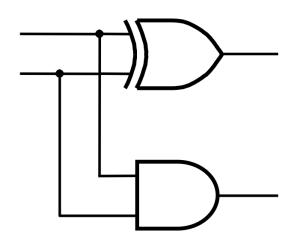
[Figure 2.70 from the textbook]


Example 9


Write the Verilog code for the following circuit ...

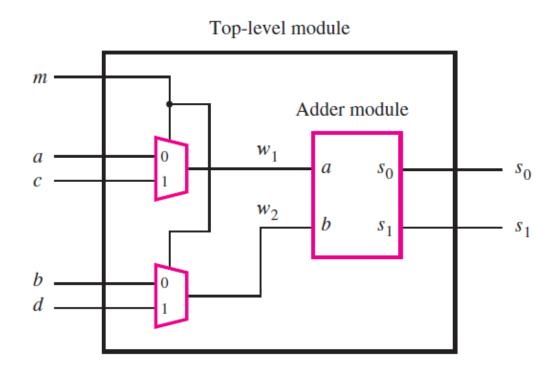
The Logic Circuit for this Example

Circuit for 2-1 Multiplexer



(c) Graphical symbol

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

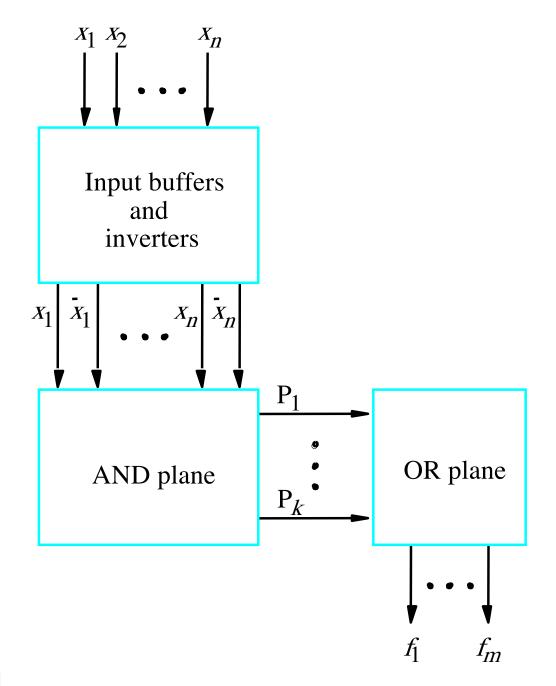

[Figure 2.33b-c from the textbook]

Addition of Binary Numbers

а	b	<i>s</i> ₁	<i>s</i> ₀
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

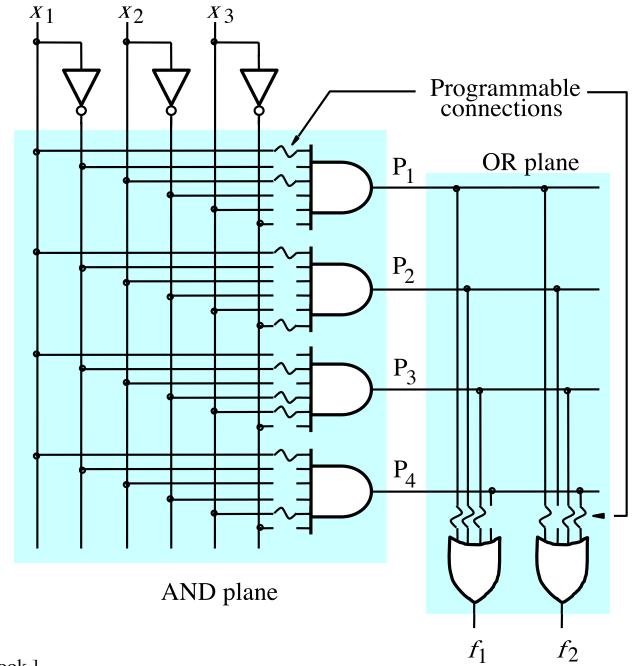
Logic Circuit vs Verilog Code

module shared (a, b, c, d, m, s1, s0);
input a, b, c, d, m;
output s1, s0;
wire w1, w2;
mux2to1 U1 (a, c, m, w1);
mux2to1 U2 (b, d, m, w2);
adder U3 (w1, w2, s1, s0);
endmodule

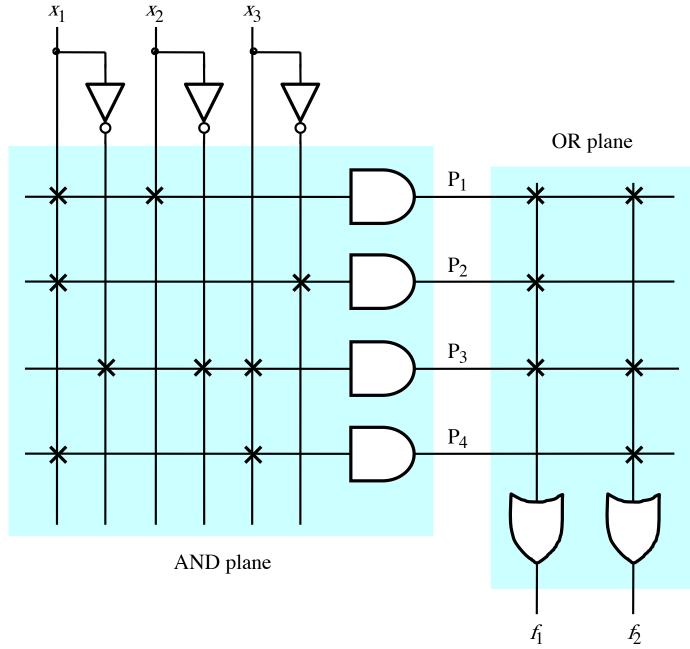

module mux2to1 (x1, x2, s, f);
input x1, x2, s;
output f;
assign f = (~s & x1) | (s & x2);
endmodule

module adder (a, b, s1, s0);
input a, b;
output s1, s0;
assign s1 = a & b;
assign s0 = a ^ b;
endmodule

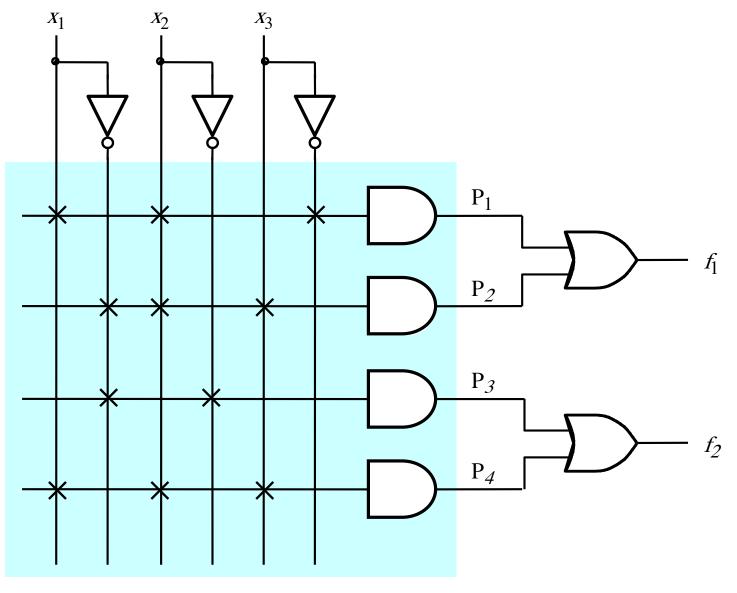
[Figure 2.73 from the textbook]


Some material form Appendix B

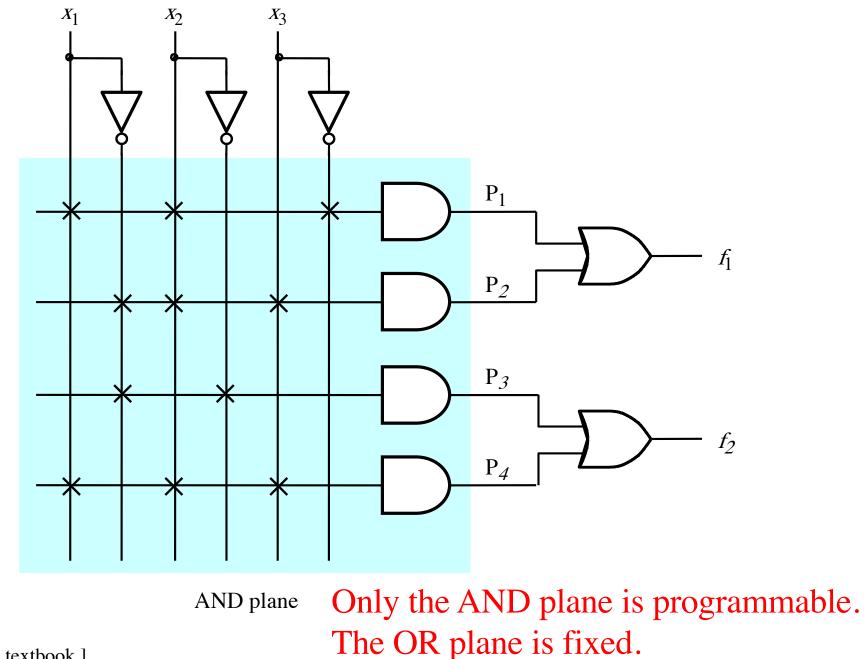
Programmable Logic Array (PLA)


[Figure B.25 from textbook]

Gate-Level Diagram of a PLA


[Figure B.26 from textbook]

Customary Schematic for PLA


[Figure B.27 from textbook]

Programmable Array Logic (PAL)

AND plane

Programmable Array Logic (PAL)

[Figure B.28 from textbook]

Questions?

THE END