

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW6 is out
- It is due on Monday Oct 14 @ 4pm.
- Please write clearly on the first page (in block capital letters) the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Also, please staple all of your pages together.

Administrative Stuff

• No HW is due next Monday (Oct 7).

Administrative Stuff

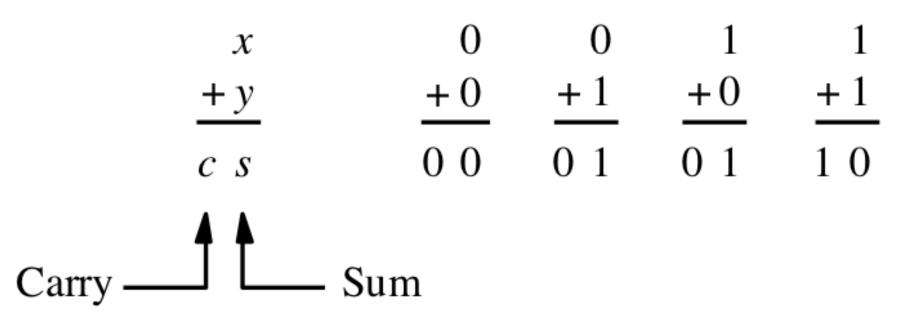
- Labs Next Week (mini-project, not Lab 6)
- The Mini-Project description is posted here:

http://www.ece.iastate.edu/~alexs/classes/ 2019_Fall_281/labs/Project-Mini/

- This one is worth 3% of your grade.
- Make sure to get all the points.

Quick Review

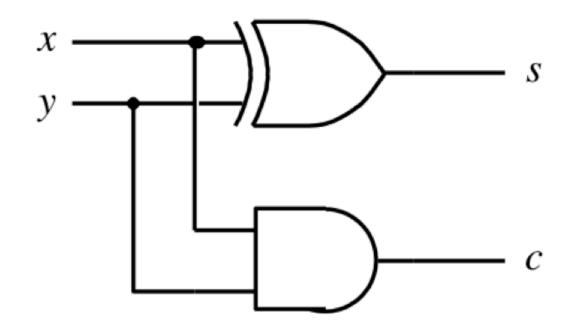
Adding two bits (there are four possible cases)



Adding two bits (the truth table)

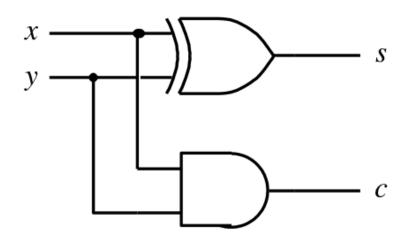
x y	Carry c	Sum
$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	0 0 0 1	0 1 1 0

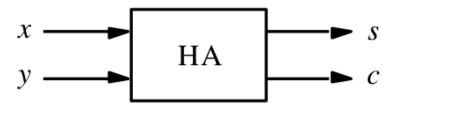
Adding two bits (the logic circuit)



[Figure 3.1c from the textbook]

The Half-Adder





(c) Circuit

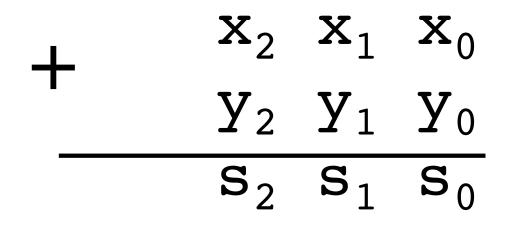
(d) Graphical symbol

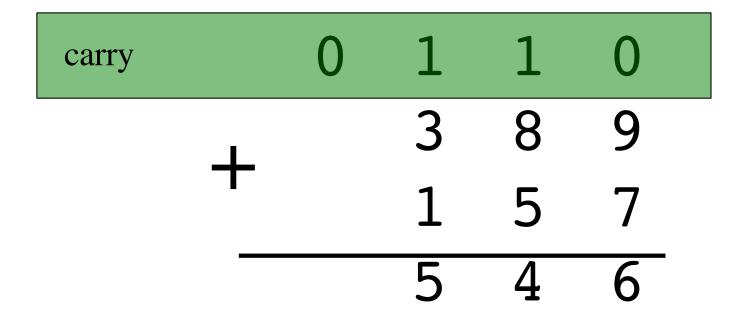
[Figure 3.1c-d from the textbook]

Addition of multibit numbers

Generated carries —	➡ 1110		 c_{i+1}	c_i	
$X = x_4 x_3 x_2 x_1 x_0$	01111	(15) ₁₀	 	x_i	
$+ Y = y_4 y_3 y_2 y_1 y_0$	+ 0 1 0 1 0	$+(10)_{10}$	 	y_i	
$S = s_4 s_3 s_2 s_1 s_0$	11001	(25) ₁₀	 	s _i	

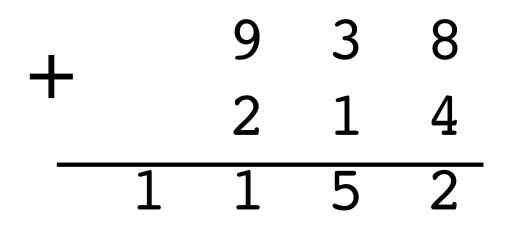
Bit position *i*



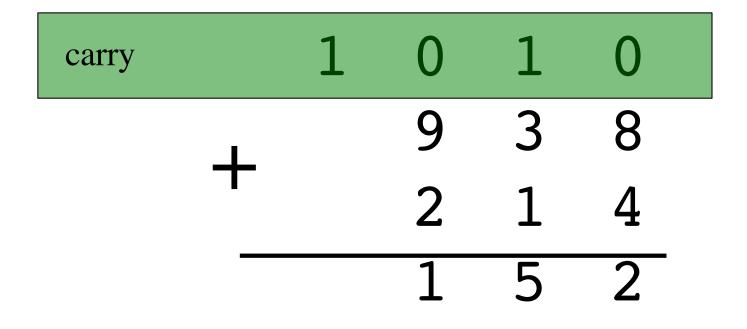


	C ₃	C ₂	\mathbf{C}_1	\mathbf{C}_0
+		\mathbf{X}_2	\mathbf{x}_1	\mathbf{x}_{0}
I		\mathbf{Y}_{2}	\mathbf{y}_1	\mathbf{Y}_{0}
		s ₂	\mathbf{s}_1	s ₀

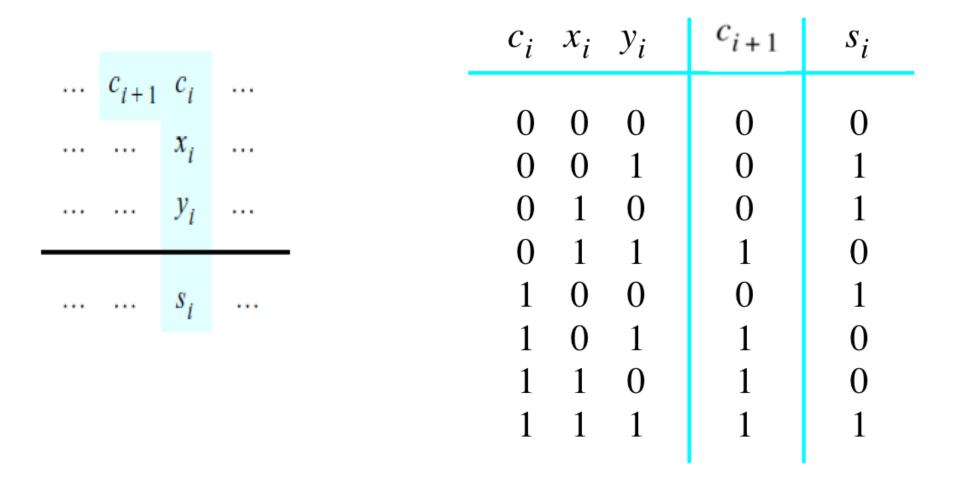
Another example in base 10



Another example in base 10

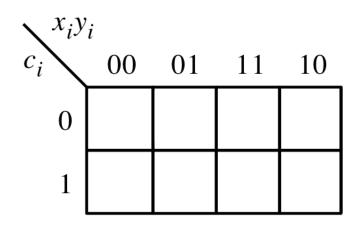


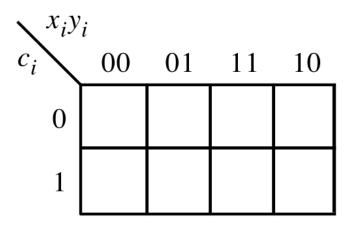
Problem Statement and Truth Table



Let's fill-in the two K-maps

c _i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
1	I	I	1	I



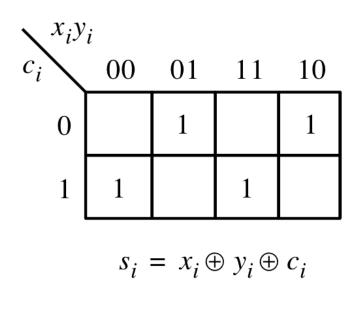


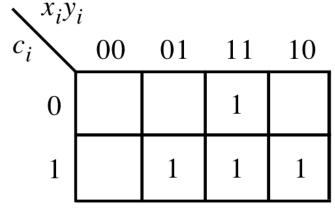
 $c_{i+1} =$

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

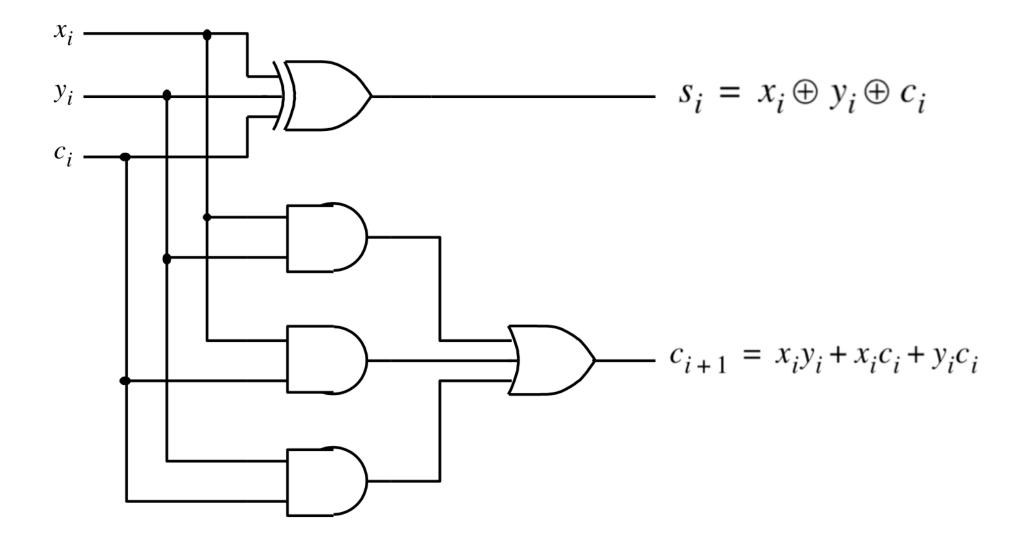
c _i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1





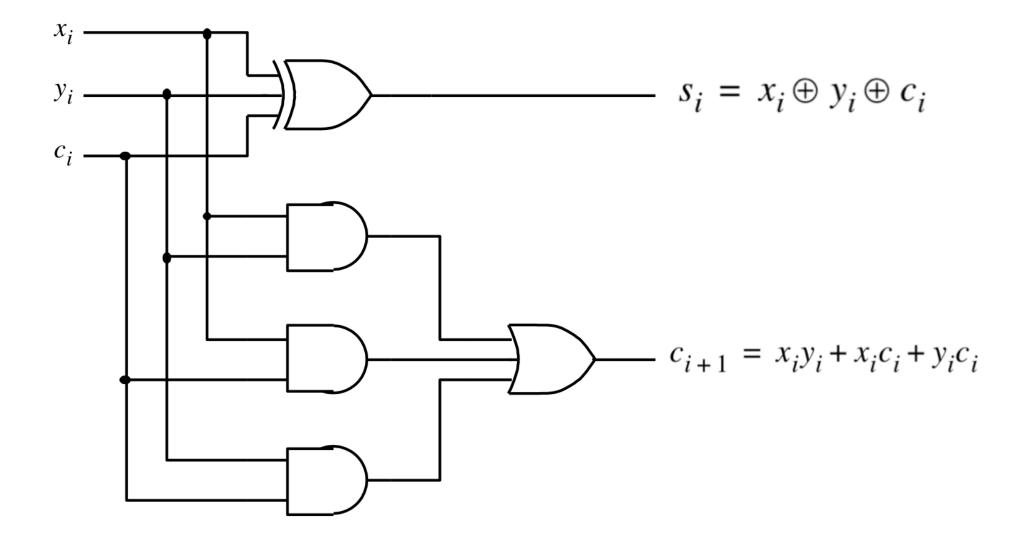
 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

The circuit for the two expressions



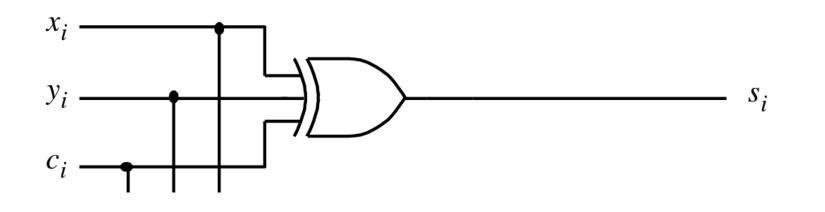
[Figure 3.3c from the textbook]

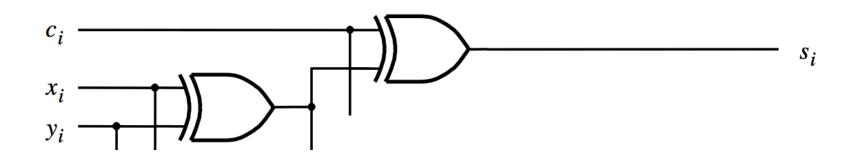
This is called the Full-Adder



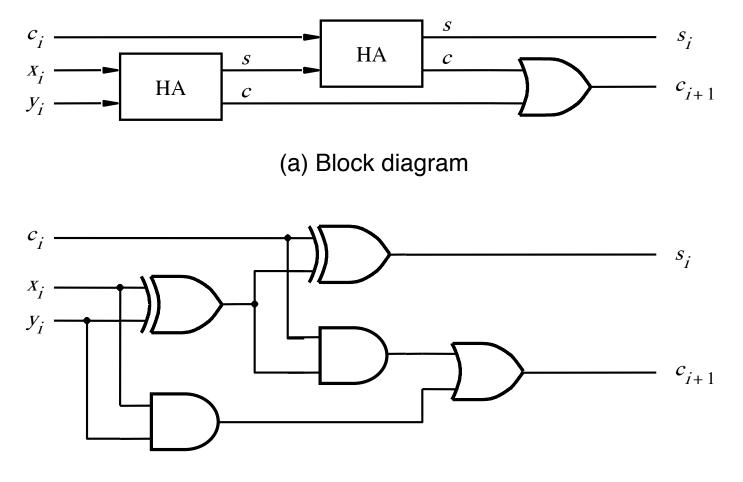
[Figure 3.3c from the textbook]

XOR Magic (s_i can be implemented in two different ways) $s_i = x_i \oplus y_i \oplus c_i$





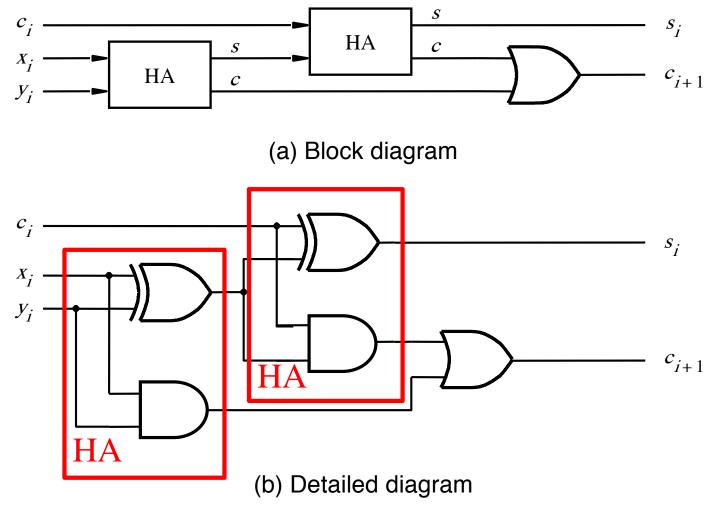
A decomposed implementation of the full-adder circuit



(b) Detailed diagram

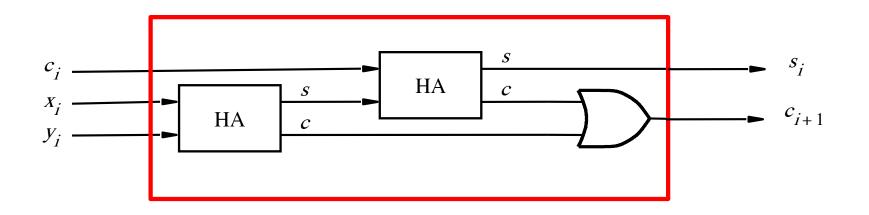
[Figure 3.4 from the textbook]

A decomposed implementation of the full-adder circuit

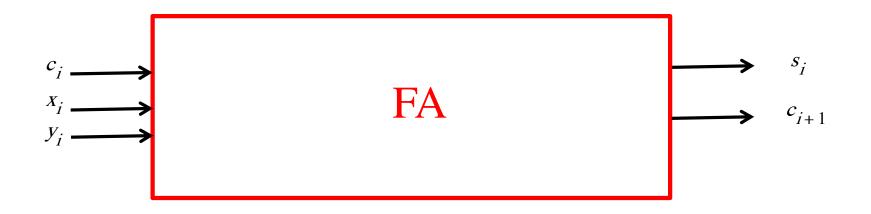


[Figure 3.4 from the textbook]

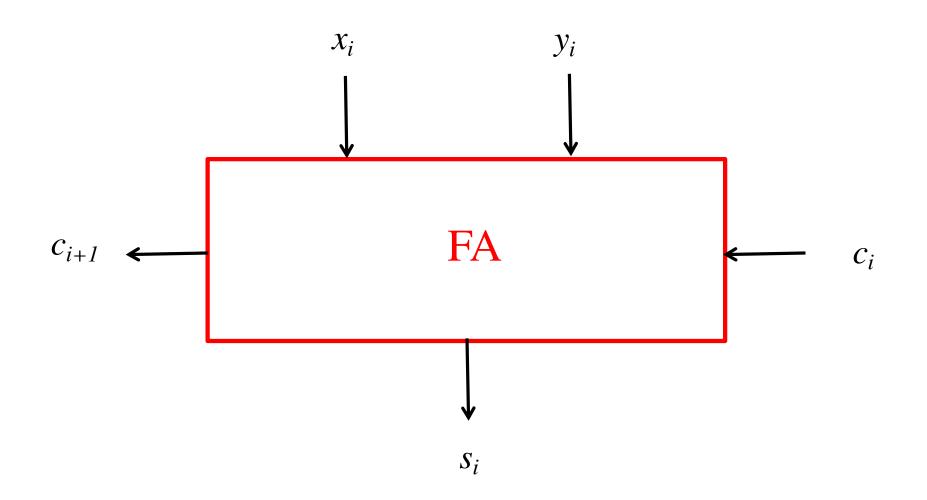
The Full-Adder Abstraction



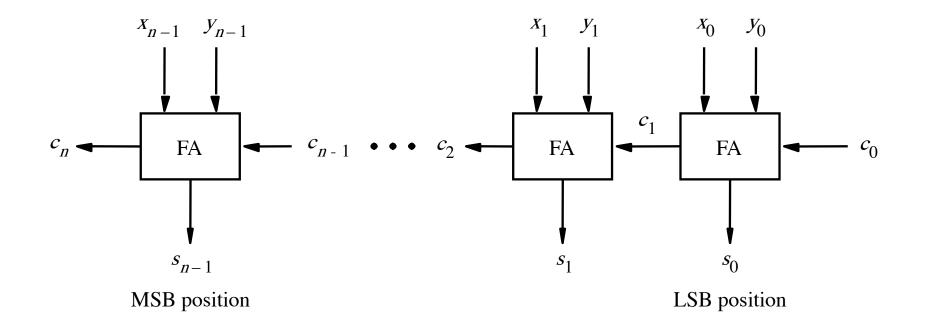
The Full-Adder Abstraction



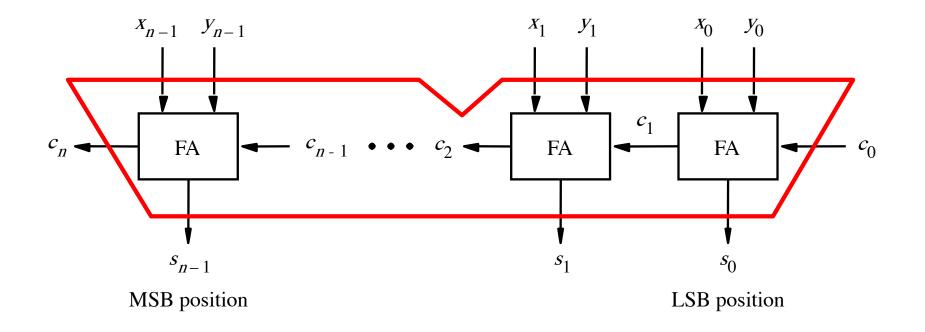
We can place the arrows anywhere



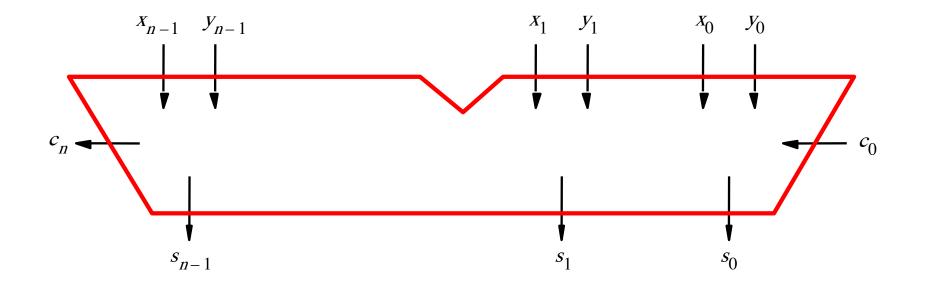
n-bit ripple-carry adder



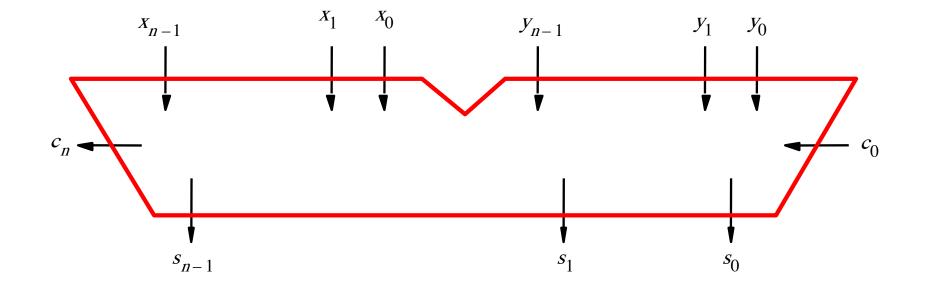
n-bit ripple-carry adder abstraction



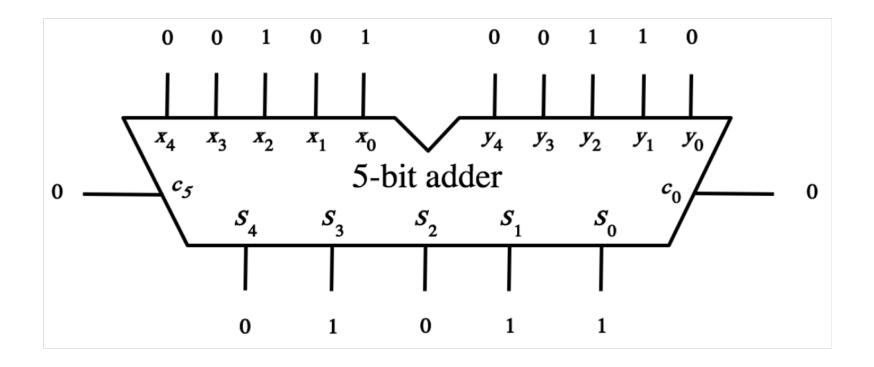
n-bit ripple-carry adder abstraction



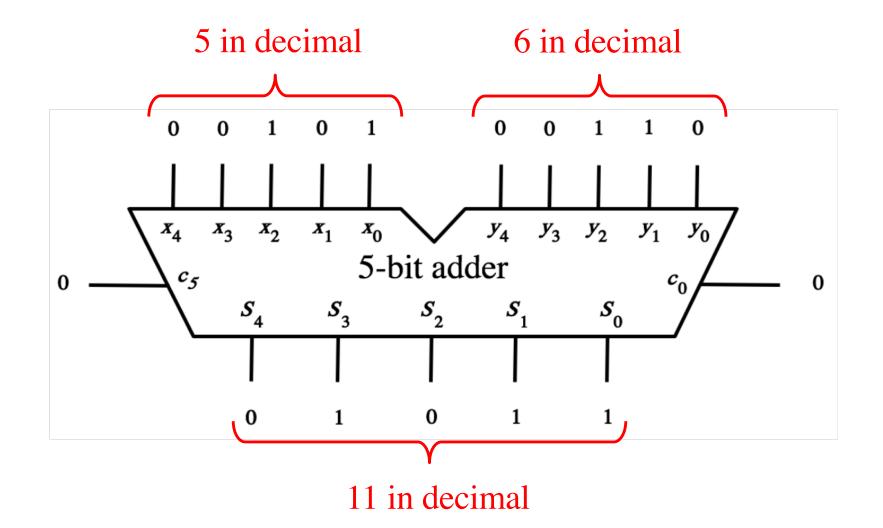
The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same



Example: Computing 5+6 using a 5-bit adder

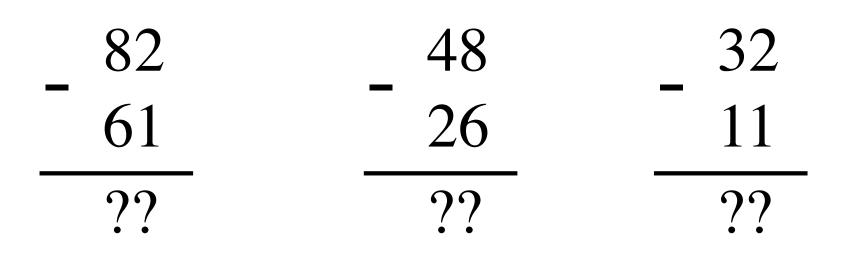


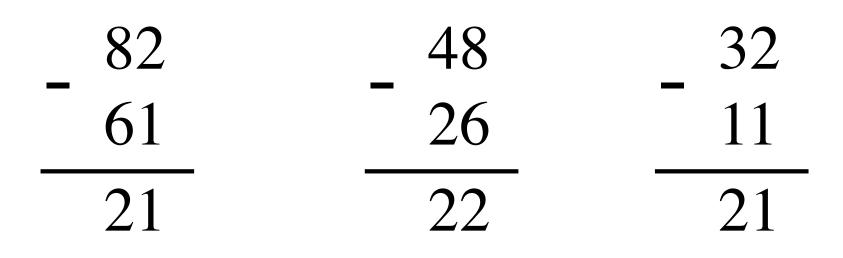
Example: Computing 5+6 using a 5-bit adder

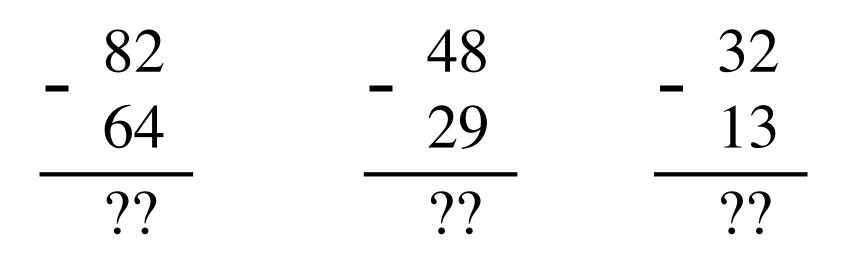


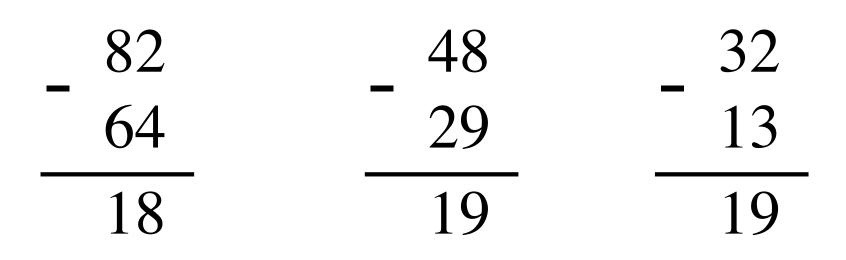
Math Review: Subtraction

- 39 - 15 ??

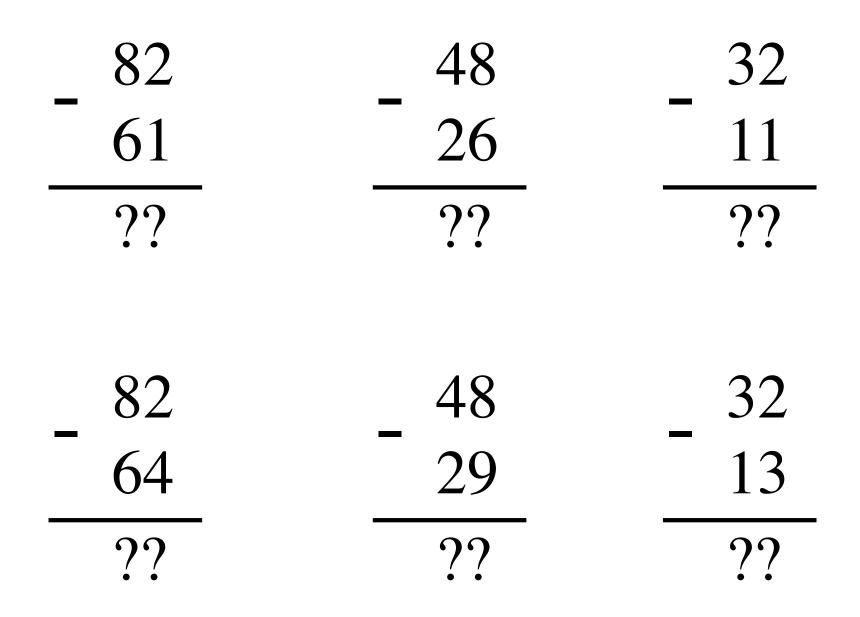




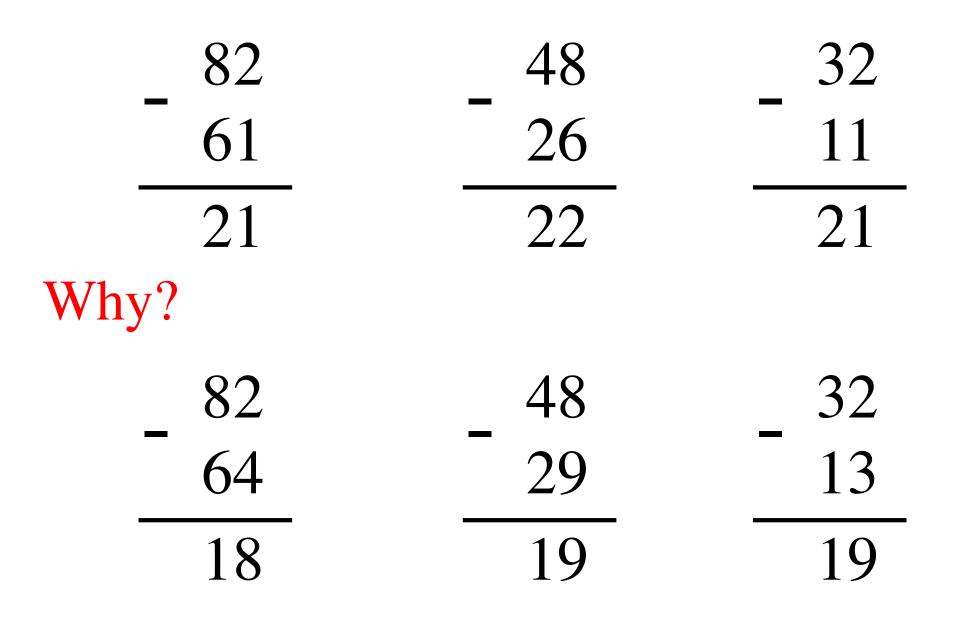




The problems in which row are easier to calculate?



The problems in which row are easier to calculate?



82 - 64 = 82 + 100 - 100 - 64

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100= 82 + (99 + 1 - 64) - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

= 82 + (99 + 1 - 64) - 100

= 82 + (99 - 64) + 1 - 100

82 - 64 = 82 + 100 - 100 - 64

= 82 + (100 - 64) - 100

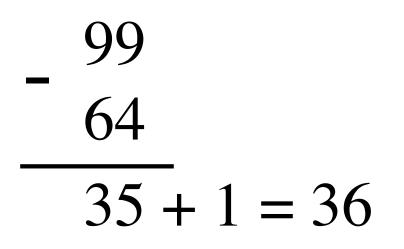
= 82 + (99 + 1 - 64) - 100

Does not require borrows

9's Complement (subtract each digit from 9)

- 99 - 64 - 35

10's Complement (subtract each digit from 9 and add 1 to the result)



82 - 64 = 82 + (99 - 64) + 1 - 100

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$
$$= 82 + 35 + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= 82 + (35 + 1) - 100

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$
$$= 82 + (35 + 1) - 100$$
$$= 82 + 36 - 100$$

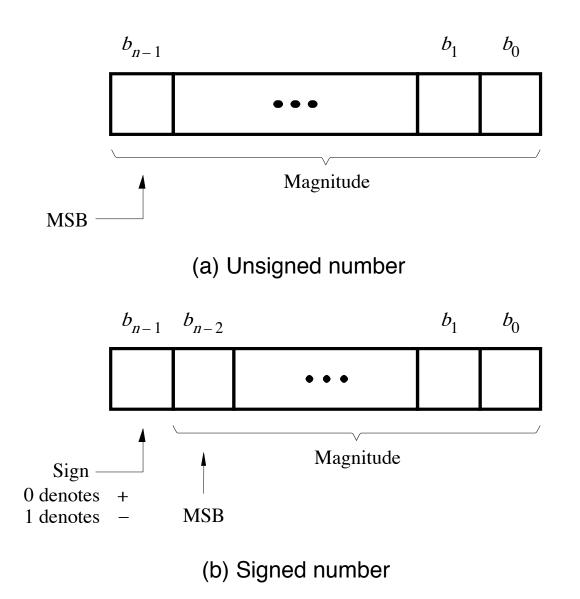
$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= $82 + (35 + 1) - 100$
= $82 + 36 - 100$ // Add the first two.
= $118 - 100$

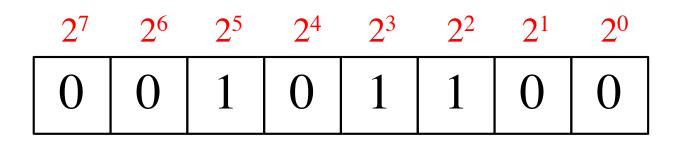
$$82 - 64 = 82 + 99 - 64} + 1 - 100$$

= $82 + 35 + 1 - 100$
= $82 + 36 - 100$ // Add the first two.
= 18
= 18

Formats for representation of integers

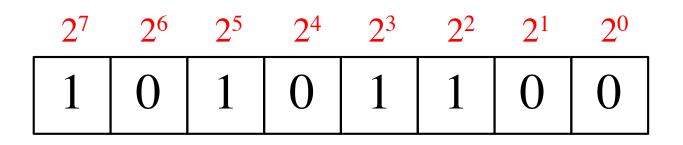


Unsigned Representation



This represents + 44.

Unsigned Representation

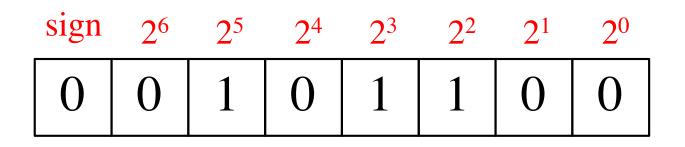


This represents + 172.

Negative numbers can be represented in following ways

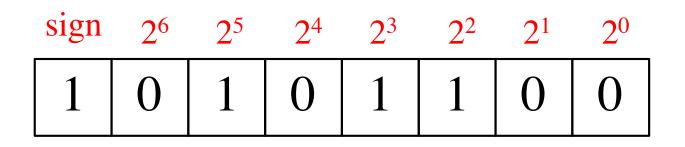
- Sign and magnitude
- •1's complement
- •2's complement

Sign and Magnitude Representation (using the left-most bit as the sign)



This represents + 44.

Sign and Magnitude Representation (using the left-most bit as the sign)



This represents -44.

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^n - 1$, namely

$$\mathbf{K} = (2^n - 1) - \mathbf{P}$$

This means that K can be obtained by inverting all bits of P.

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

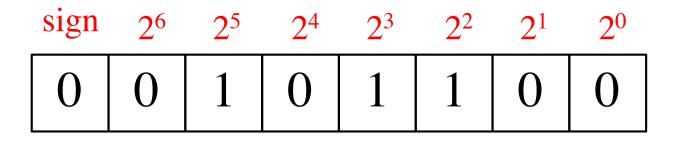
Then, in 1's complement representation K is obtained by subtracting P from $2^8 - 1$, namely

$$K = (2^8 - 1) - P = 127 - P$$

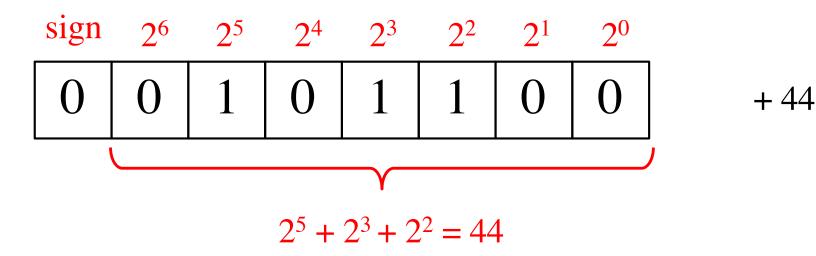
This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most significant bit must be zero to indicate that it is positive.

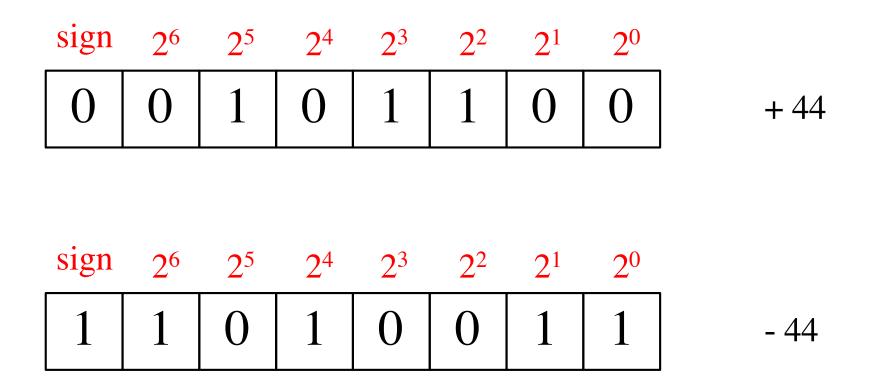
1's Complement Representation



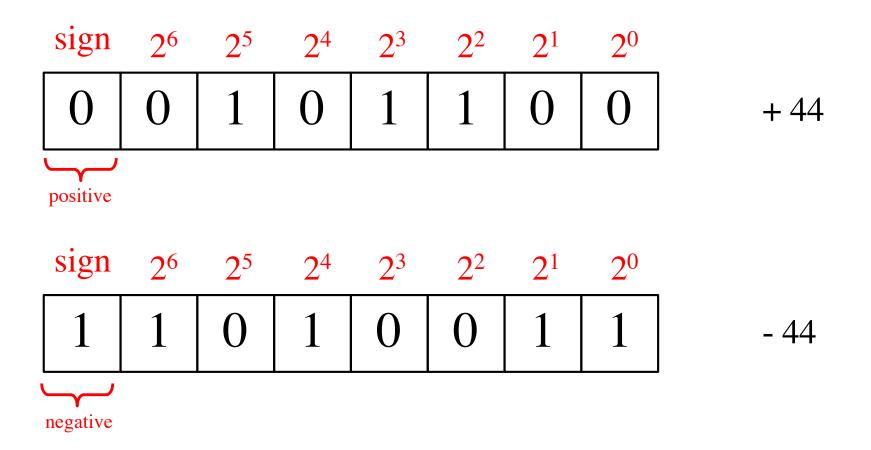
1's Complement Representation



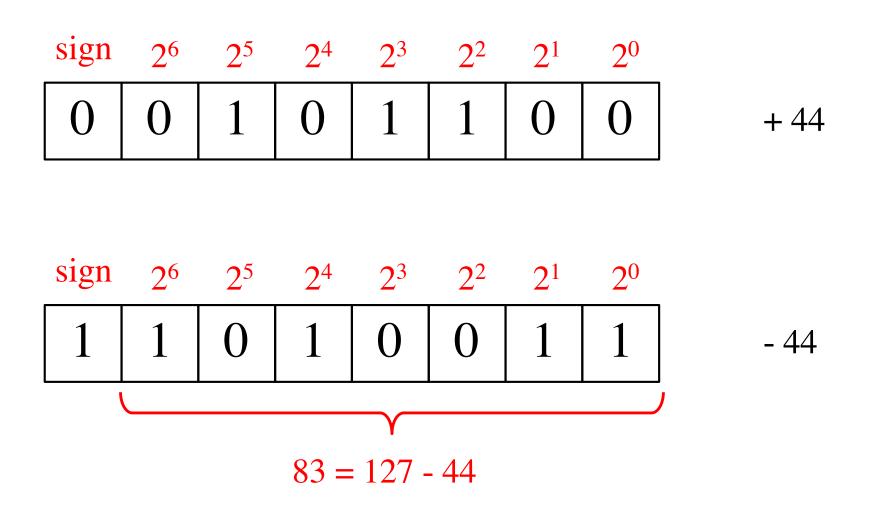
1's Complement Representation (invert all the bits to negate the number)



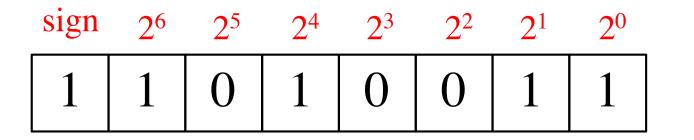
1's Complement Representation (invert all the bits to negate the number)



1's Complement Representation (invert all the bits to negate the number)

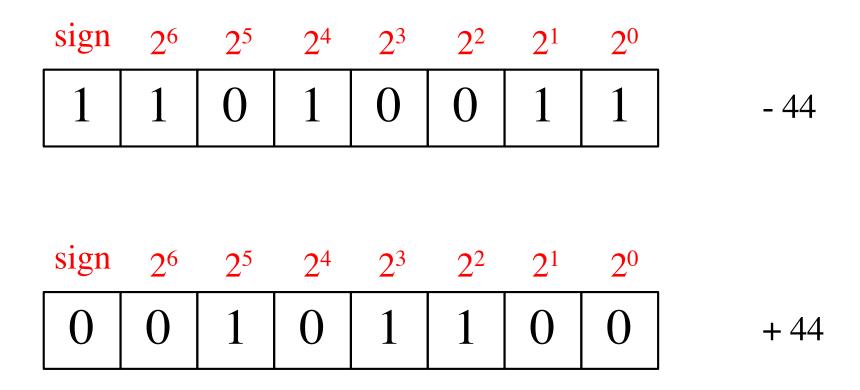


This works in reverse too (from negative to positive)

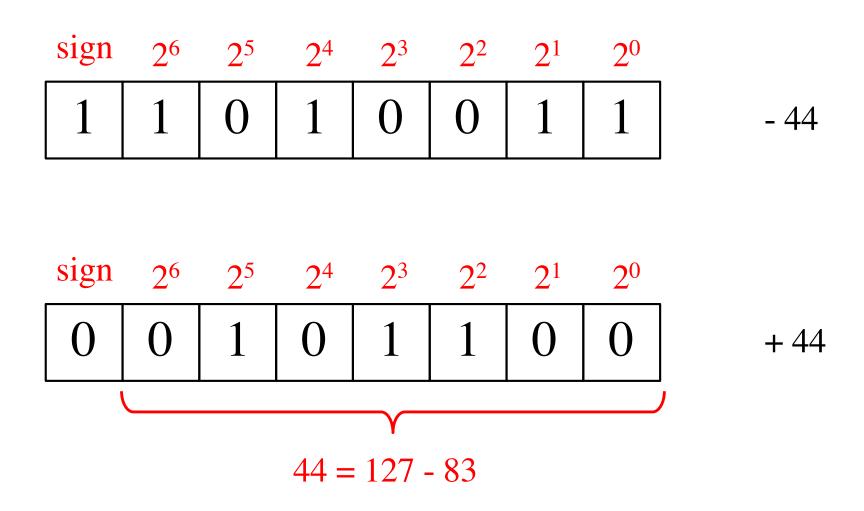


- 44

1's Complement Representation (invert all the bits to negate the number)



1's Complement Representation (invert all the bits to negate the number)



Find the 1's complement of ...

Find the 1's complement of ...

0 1 0 1 1 0 1 0 1 1 0 1

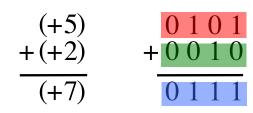
0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0

Just flip 1's to 0's and vice versa.

	$b_3b_2b_1b_0$	1's complement
	0111	+7
	0110	+6
0.1	0101	+5
01	0100	+4
0 1 0	0011	+3
11	0010	+2
	0001	+1
	0000	+0
	1000	-7
	1001	-6
	1010	-5
	1011	-4
	1100	-3
	1101	-2
	1110	-1
	1111	-0

$$\begin{array}{c} (+5) \\ +(+2) \\ \hline (+7) \end{array} + \begin{array}{c} 0 \ 1 \ 0 \\ + \ 0 \ 0 \ 1 \ 0 \\ \hline 0 \ 1 \ 1 \end{array}$$

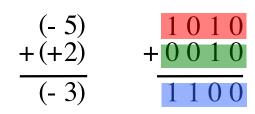
$b_{3}b_{2}b_{1}b_{0}$	1's complement
0111 0110 0100 0011 0010 0001 0000 1000 1000 1000 1001 1011 1100 1101	$ \begin{array}{r} +7\\ +6\\ +5\\ +4\\ +3\\ +2\\ +1\\ +0\\ -7\\ -6\\ -5\\ -4\\ -3\\ -2\\ \end{array} $
$\begin{array}{c} 1110\\1111\end{array}$	$-1 \\ -0$



	$b_3b_2b_1b_0$	1's complement
	03020100	1 b complement
	0111	+7
	0110	+6
	0101	+5
	0100	+4
) -	0011	+3
)	0010	+2
	0001	+1
	0000	+0
	1000	-7
	1001	-6
	1010	-5
	1011	-4
	1100	-3
	1101	-2
	1110	-1
	1111	-0

$$\begin{array}{c} (-5) \\ +(+2) \\ \hline (-3) \end{array} + \begin{array}{c} 1 \ 0 \ 1 \ 0 \\ + \ 0 \ 0 \ 1 \ 0 \\ \hline \hline 1 \ 1 \ 0 \ 0 \end{array}$$

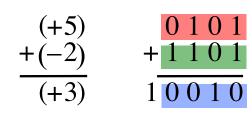
$b_3b_2b_1b_0$	1's complement
03020100	
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0



	$b_3b_2b_1b_0$	1's complement
	0111	+7
	0110	+6
0.1	0101	+5
$\begin{array}{c} 0 \\ 1 \\ 1 \end{array}$	0100	+4
0.1	0011	+3
10	0010	+2
	0001	+1
	0000	+0
	1000	-7
	1001	-6
	1010	-5
	1011	-4
	1100	-3
	1101	-2
	1110	-1
	1111	-0

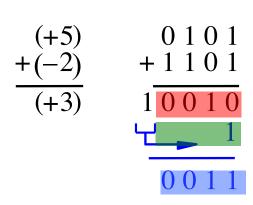
$$\begin{array}{c} (+5) & 0 \ 1 \ 0 \\ +(-2) & + 1 \ 1 \ 0 \\ \hline (+3) & 1 \ 0 \ 0 \ 1 \end{array}$$

$b_3 b_2 b_1 b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0



0111 +7	
0110 + 6	
(+5) 0101 $+5$ 0100 $+4$	
$\pm (2) \pm 1101$	
(+3) 10010 But this is 2! 0010 +2	
0001 +1	
0000 + 0	
1000 -7	
1001 - 6	
1010 -5	
1011 -4	
1100 -3	
1101 -2	
1110 -1	
1111 -0	

	$b_3 b_2 b_1 b_0$	1's complement
	0111	+7
	0110	+6
(15) 0101	0101	+5
$\begin{array}{ccc} (+5) & 0 \ 1 \ 0 \ 1 \\ +(-2) & + \ 1 \ 1 \ 0 \ 1 \end{array}$	0100	+4
	0011	+3
(+3) 10010	0010	+2
· · · · · · · · · · · · · · · · · · ·	0001	+1
0011	0000	+0
	1000	-7
	1001	-6
	1010	-5
	1011	-4
We need to perform one	1100	-3
more addition to get the result.	1101	-2
more addition to get the result.	1110	-1
	1111	-0



We need to perform one more addition to get the result.

$b_3 b_2 b_1 b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
	_

$$\begin{array}{rrr} (-5) & 1 & 0 & 1 & 0 \\ + & (-2) & + & 1 & 1 & 0 & 1 \\ \hline & & & & & 1 & 0 & 1 & 1 & 1 \end{array}$$

[Figure 3.8 from the textbook]

(-5) + (-2)	1010 +1101
(-7)	10111

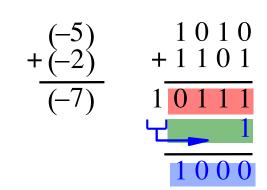
$b_3 b_2 b_1 b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

			$b_3b_2b_1b_0$ 0111	1's complement
			0110 0101	+7 +6 +5
	+ 1010 + 1101	But this is +7!	0100 0011	$^{+4}_{+3}$
	1 0 1 1 1		0010 0001 0000	$^{+2}_{+1}_{+0}$
			1000 1001	+0 -7 -6
			1010 1011 1100	$-5 \\ -4 \\ 2$
			1100 1101 1110	$\begin{array}{c} -3 \\ -2 \\ -1 \end{array}$
			1110	-0

+(-5) + (-2)	1010 + 1101
(-7)	1 0 1 1 1
× /	└」 1
	1000

We need to perform one more addition to get the result.

$b_3 b_2 b_1 b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000	+7 +6 +5 +4 +3 +2 +1 +0
$ \begin{array}{r} 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1110 \\ 1111 \end{array} $	$egin{array}{c} -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ -0 \end{array}$



We need to perform one more addition to get the result.

$\begin{array}{c cccc} 0111 & +7 \\ 0110 & +6 \\ 0101 & +5 \\ 0100 & +4 \\ 0011 & +3 \\ 0010 & +2 \\ 0001 & +1 \\ 0000 & +0 \\ 1000 & -7 \\ 1001 & -6 \\ 1010 & -5 \\ 1011 & -4 \\ 1100 & -3 \\ 1101 & -2 \\ 1110 & -1 \\ 1111 & -0 \\ \end{array}$	$b_3 b_2 b_1 b_0$	1's complement	
	0111 0110 0101 0100 0011 0010 0001 0000 1000 1000 1001 1010 1011 1100 1101 1110	$ \begin{array}{r} +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \\ \end{array} $	

2's complement

(subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2^n , namely

$$K = 2^n - P$$

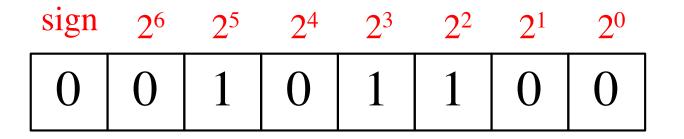
2's complement

(subtract each digit from 1 and add 1 to the result)

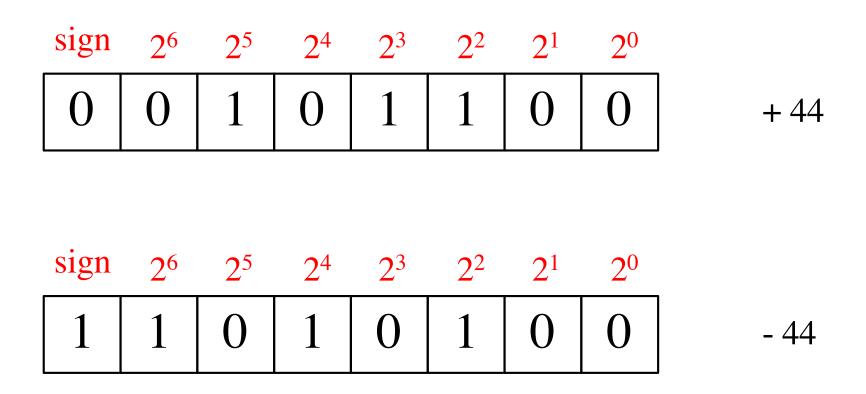
Let K be the negative equivalent of an 8-bit positive number P.

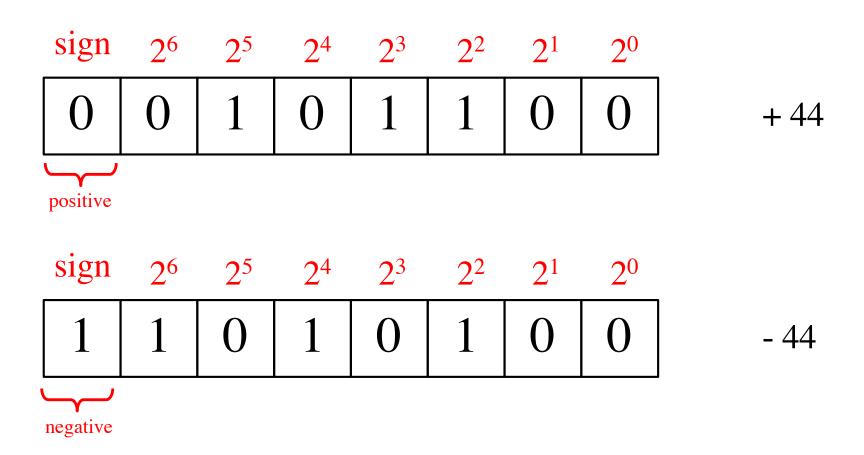
Then, in 2's complement representation K is obtained by subtracting P from 2^8 , namely

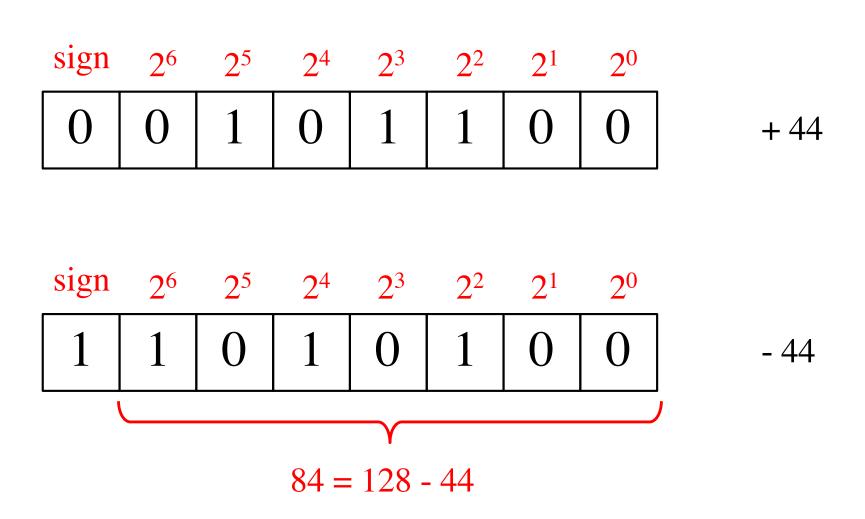
$$K = 2^8 - P = 128 - P$$



+44







Deriving 2's complement

For a positive n-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P$$

 $K_2 = 2^n - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

Deriving 2's complement

For a positive 8-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P = 127 - P$$

 $K_2 = 2^n - P = 128 - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

Find the 2's complement of ... 0 1 0 1 0 0 1 0

Find the 2's complement of ... 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1

 Invert all bits.

Find the 2's complement of ... + ++╋

Then add 1.

Quick Way to find 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

Find the 2's complement of ...

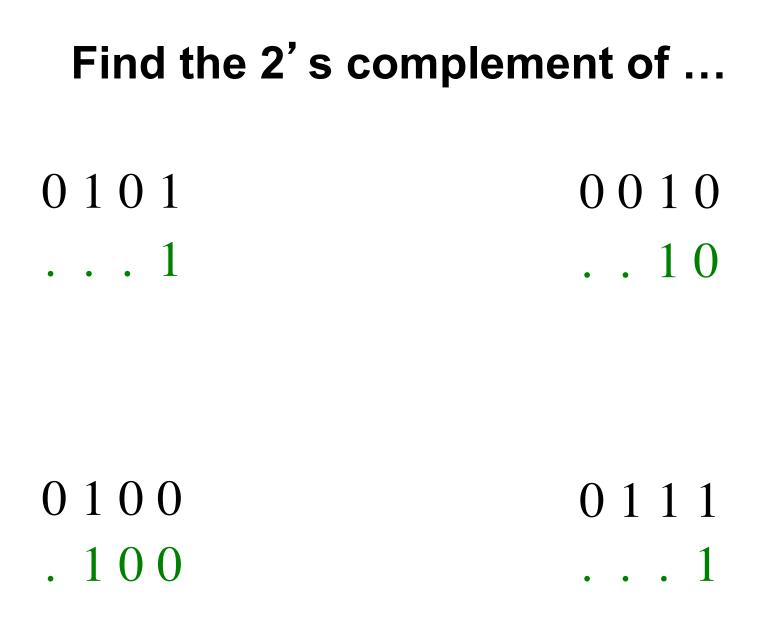
0 1 0 1 0 0 0 1 0

0100

0111

Find the 2's complement of ... 0010 0101 . . . 0 • 0100 0111 . . 00

Copy all bits that are 0 from right to left.



Stop at the first 1. Copy that 1 as well.

Find the 2's complement of ...

 Invert all remaining bits.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

[Table 3.2 from the textbook]

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

The top half is the same in all three representations.

It corresponds to the positive integers.

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In all three representations the first bit represents the sign. If that bit is 1, then the number is negative.

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

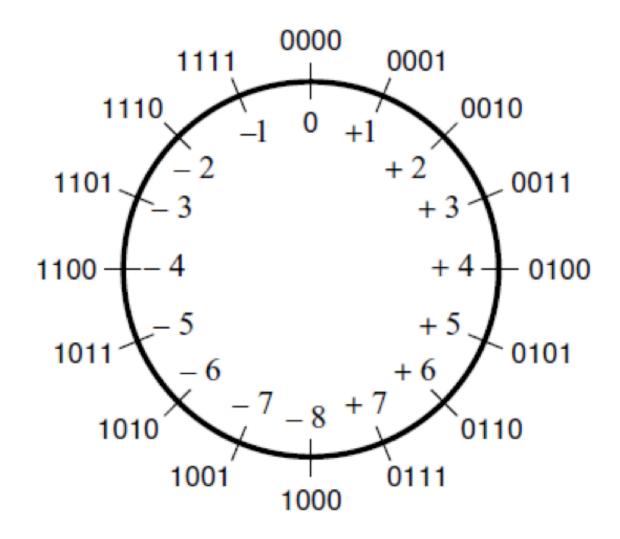
$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	1	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

The number circle for 2's complement



[Figure 3.11a from the textbook]

A) Example of 2's complement addition

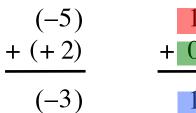
	$b_{3}b_{2}b_{1}b_{0}$	2's complement
	0111 0110	+7 +6
0 1 1 0	0101 0100	+5 +4
11	0011 0010 0001	+3 +2 +1
	0000 1000	$^{+0}_{-8}$
	$1001 \\ 1010 \\ 1011$	-7 -6 -5
	1100 1101	-4 -3
	$\begin{array}{c} 1110\\ 1111 \end{array}$	$-2 \\ -1$

(+ 5)	01
+ (+ 2)	+ 0 0
(+7)	01

B) Example of 2's complement addition

	$b_3b_2b_1b_0$	2's complement
	03020100	2 5 complement
	0111	+7
	0110	+6
	0101	+5
1011	0100	+4
+ 0010	0011	+3
	0010	+2
1 1 0 1	0001	+1
	0000	+0
	1000	-8
	1001	-7
	1010	-6
	1011	-5
	1100	-4
	1101	-3
	1110	-2
	1111	$^{-1}$

т



C) Example of 2's complement addition

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$b_3b_2b_1b_0$	2's complement
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0111	+7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0110	+6
$ \frac{+(-2)}{(+3)} + 1110 \\ 10011 \\ 10011 \\ +3 \\ 0010 \\ +2 \\ 0001 \\ +1 \\ 0000 \\ +0 \\ 1000 \\ -8 \\ 1001 \\ -7 \\ 1010 \\ -6 \\ 1011 \\ -5 \\ 1100 \\ -4 \\ 1101 \\ -3 \\ 1110 \\ -2 $		0101	+5
(+3) 1 0 0 1 1 $(+3) 1 0 0 1 1$ $(+3) 1 0 0 1 1$ $(+3) 1 0 0 1 1$ $(+3) 1 0 0 1 1$ $(+3) 1 0 0 1 1$ $(-8) 1000 -8$ $1001 -7$ $1010 -6$ $1011 -5$ $1100 -4$ $1101 -3$ $1110 -2$		0100	+4
$(+3) 1 0 0 1 1 \\ 0 0 0 1 +1 \\ 0 0 0 0 +0 \\ 1 0 0 0 -8 \\ 1 0 0 1 -7 \\ 1 0 1 0 -6 \\ 1 0 1 1 -5 \\ 1 1 0 0 -4 \\ 1 1 0 1 -3 \\ 1 1 1 0 -2 \\ \end{bmatrix}$	+ (-2) + 1110	0011	+3
ignore $0001 +1$ 0000 +0 1000 -8 1001 -7 1010 -6 1011 -5 1100 -4 1101 -3 1110 -2		0010	+2
ignore 1000 -8 1001 -7 1010 -6 1011 -5 1100 -4 1101 -3 1110 -2	(+3) 10011	0001	+1
ignore 1001 -7 1010 -6 1011 -5 1100 -4 1101 -3 1110 -2		0000	+0
$\begin{array}{c c} 1010 & -6 \\ 1011 & -5 \\ 1100 & -4 \\ 1101 & -3 \\ \hline 1110 & -2 \\ \end{array}$		1000	-8
$\begin{array}{c cccc} 1010 & -6 \\ 1011 & -5 \\ 1100 & -4 \\ 1101 & -3 \\ \hline 1110 & -2 \end{array}$	ignore	1001	-7
$\begin{array}{c cccc} 1100 & -4 \\ 1101 & -3 \\ \hline 1110 & -2 \end{array}$		1010	-6
$\begin{array}{c c} 1101 & -3 \\ 1110 & -2 \end{array}$		1011	-5
1110 -2		1100	-4
1110 -2		1101	-3
1111 -1		1110	-2
		1111	-1

т

D) Example of 2's complement addition

	$b_3 b_2 b_1 b_0$	2's complement
$\begin{array}{c} (-5) & 1011 \\ + (-2) & + 1110 \\ (-7) & 11001 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$b_3b_2b_1b_0$ 0111 0110 0101 0100 0011 0010 0001 0000 1000 1000 1001 1011 1100 1111 1110 1111	$ \begin{array}{r} +7 \\ +6 \\ +5 \\ +4 \\ +3 \\ +2 \\ +1 \\ +0 \\ -8 \\ -7 \\ -6 \\ -7 \\ -6 \\ -5 \\ -4 \\ -3 \\ -2 \\ -1 \end{array} $

т

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

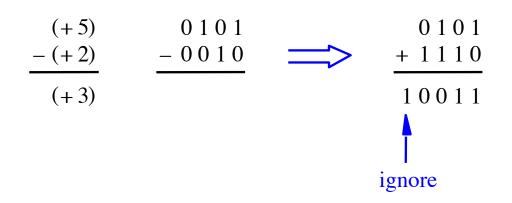
representation for signed integer numbers

 algorithm for computing the 2's complement (regardless of the representation of the number)

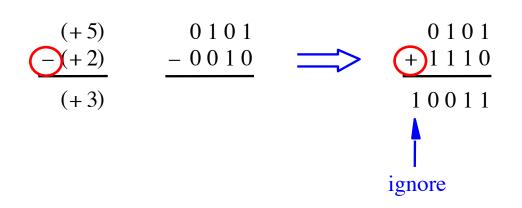
Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number) take the 2's complement



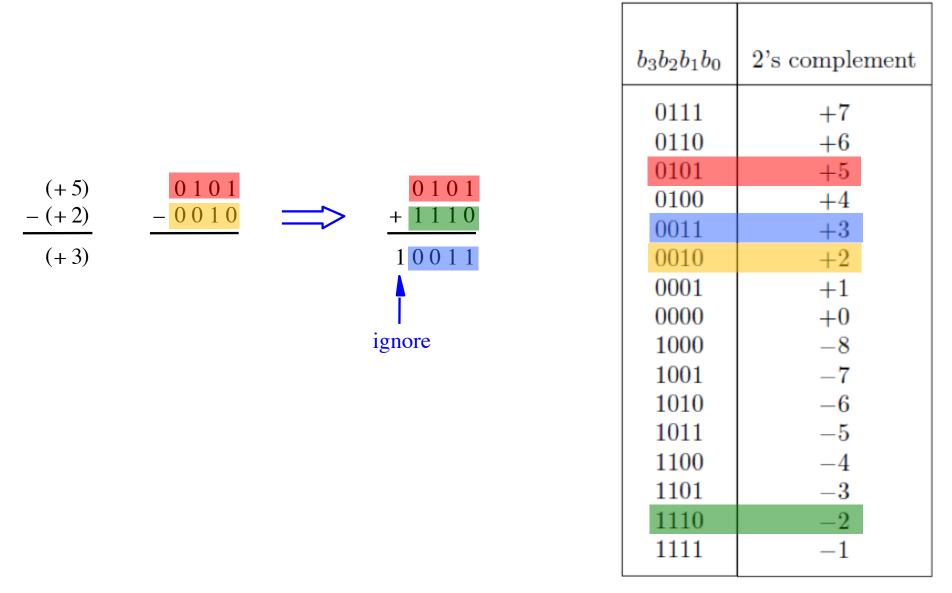
[Figure 3.10 from the textbook]



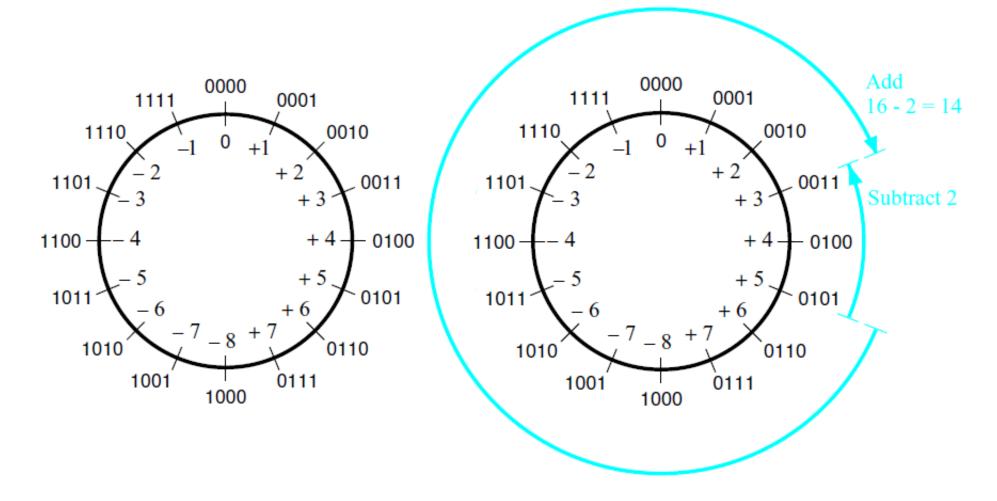
Notice that the minus changes to a plus.

[Figure 3.10 from the textbook]

			$b_3 b_2 b_1 b_0$	2's complement
			0111	+7
			0110	+6
(. 5)	0 1 0 1	0.1	0101	+5
(+ 5) - (+ 2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0100	+4
	-0010 +11	<u> </u>	0011	+3
(+3)	100	11	0010	+2
			0001	+1
			0000	+0
	ignore		1000	-8
			1001	-7
			1010	-6
			1011	-5
			1100	-4
			1101	-3
			1110	-2
			1111	-1



Graphical interpretation of four-bit 2's complement numbers



(a) The number circle

(b) Subtracting 2 by adding its 2's complement

[Figure 3.11 from the textbook]

$ \begin{array}{cccc} \begin{pmatrix} (-5) \\ -(+2) \\ (-7) \\ \end{array} & \begin{array}{c} 1011 \\ -0010 \\ \end{array} & \begin{array}{c} +1110 \\ 11001 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c} b_3b_2b_1b_0\\ 0111\\ 0110\\ 0101\\ 0100\\ 0011\\ 0000\\ 1000\\ 1000\\ 1000\\ 1001\\ 1010\\ 1011\\ 1100\\ \end{array}$	2's complement +7 +6 +5 +4 +3 +2 +1 +0 -8 -7 -6 -5
	1010	-6 -5
	1100 1101 1110	$\begin{array}{c} -4 \\ -3 \\ -2 \end{array}$
	1110	-2 -1

				$b_{3}b_{2}b_{1}$	b_0 2's complement
				0111	+7
				0110	+6
				0101	+5
(+ 5)	0101		0101	0100	+4
- (-2)	- 1110	_>	+ 0010	0011	-
(+7)			0111	0010	
(+7)			0111	0001	
				0000	
				1000	
				1001	
				1010	
				1011	
				1100	
				1101	
				1110	
				1111	-1

[Figure 3.10 from the textbook]

			$b_3b_2b_1b_0$	2's complement
			0111	+7
			0110	+6
			0101	+5
(-5)	1011	1011	0100	+4
- (-2)	- 1 1 1 0	 + 0010	0011	+3
			0010	+2
(-3)		1 1 0 1	0001	+1
			0000	+0
			1000	$^{-8}$
			1001	-7
			1010	-6
			1011	-5
			1100	-4
			1101	-3
			1110	-2
			1111	-1

Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal
+7	0111	\Longrightarrow	1001	-7
+6	0110	\Longrightarrow	1010	-6
+5	0101	\Longrightarrow	1011	-5
+4	0100	\Longrightarrow	1100	-4
+3	0011	\Longrightarrow	1101	-3
+2	0010	\Longrightarrow	1110	-2
+1	0001	\Longrightarrow	1111	-1
+0	0000	\Longrightarrow	0000	+0
-8	1000	\Longrightarrow	1000	-8
-7	1001	\Longrightarrow	0111	+7
-6	1010	\Longrightarrow	0110	+6
-5	1011	\Longrightarrow	0101	+5
-4	1100	\Longrightarrow	0100	+4
-3	1101	\Longrightarrow	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	\Longrightarrow	0001	+1

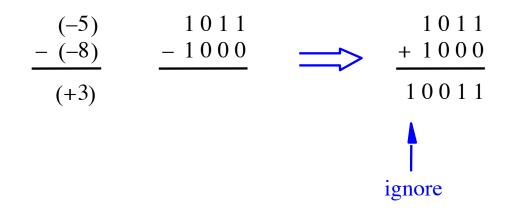
Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal	
+7	0111	\Longrightarrow	1001	-7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\Longrightarrow	1111	-1	This is
+0	0000	\Rightarrow	0000	+0 t	he only
-8	1000	\Longrightarrow	1000	-8 6	exception
-7	1001	\Longrightarrow	0111	+7	
-6	1010	\Longrightarrow	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

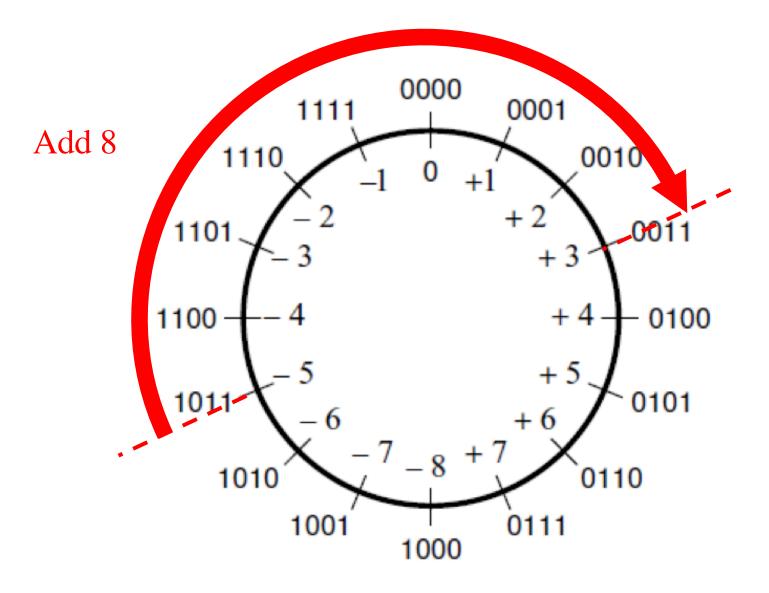
Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	$b_3 b_2 b_1 b_0$	decimal	
+7	0111	\Longrightarrow	1001	-7	
+6	0110	\Longrightarrow	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\Longrightarrow	1111	-1	
+0	0000	\Longrightarrow	0000	+0 A	nd this
-8	1000	\Longrightarrow	1000	-8	ne too.
-7	1001	\Longrightarrow	0111	+7	ic 100.
-6	1010	\Longrightarrow	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\Longrightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

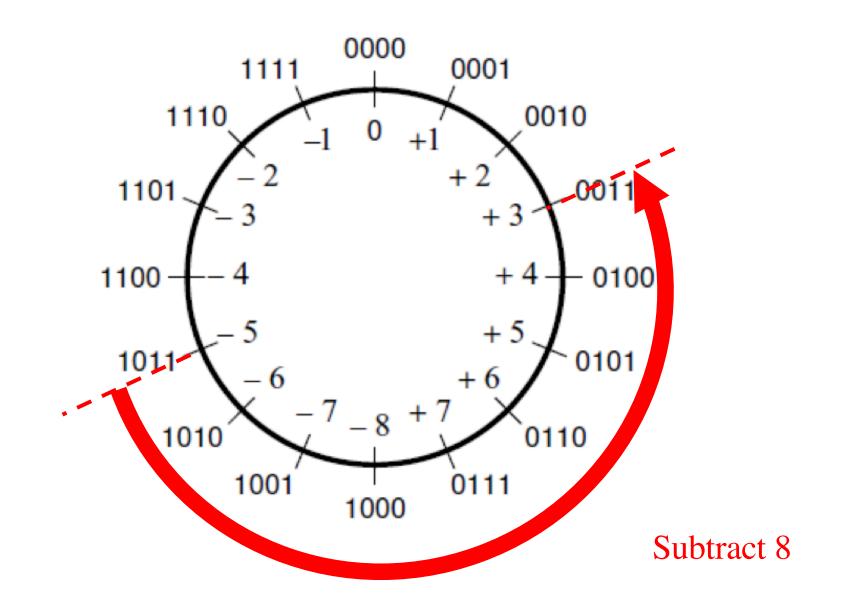
But that exception does not matter



But that exception does not matter



But that exception does not matter

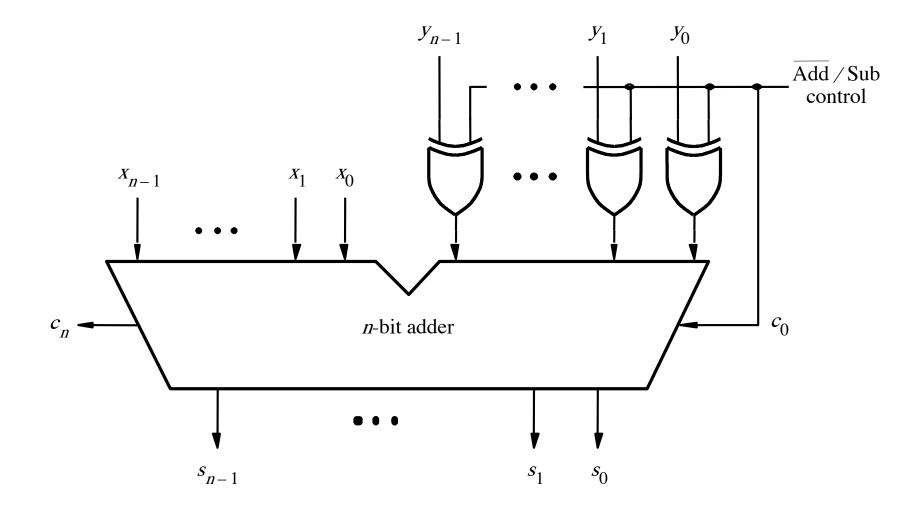


Take-Home Message

 Subtraction can be performed by simply adding the 2's complement of the second number, regardless of the signs of the two numbers.

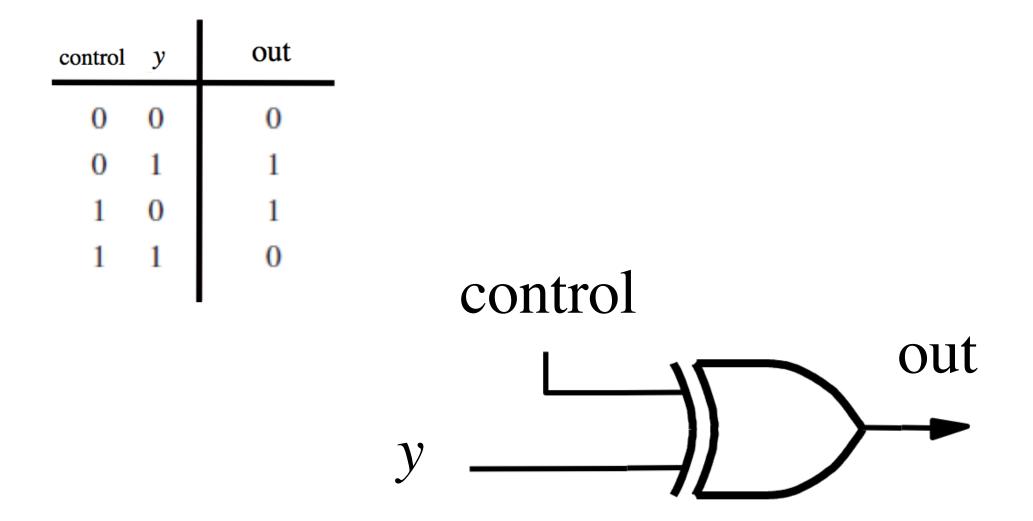
 Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

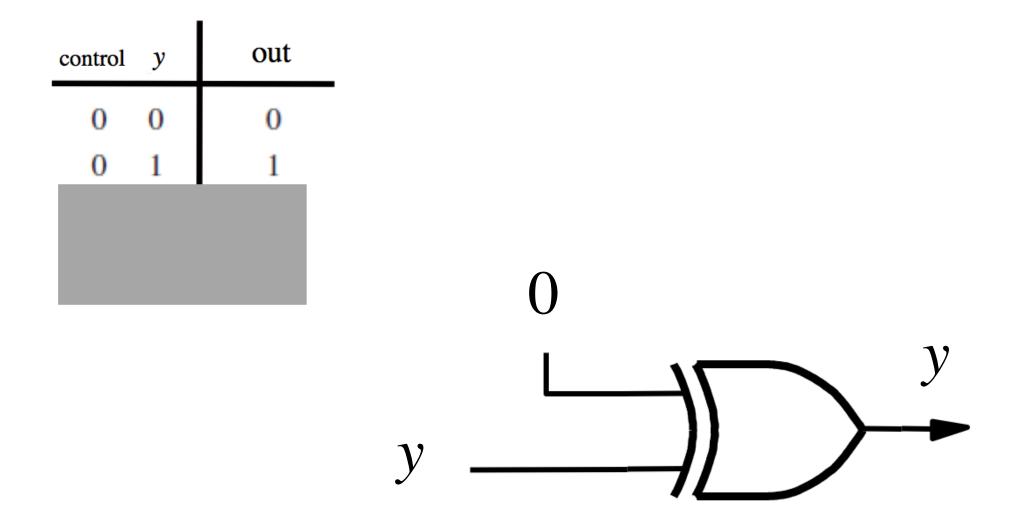


[Figure 3.12 from the textbook]

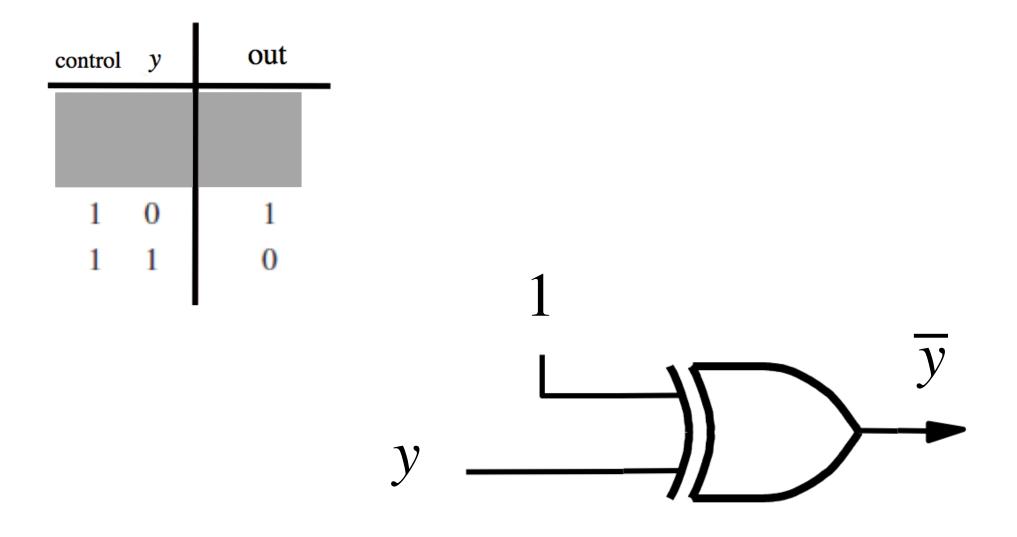
XOR Tricks



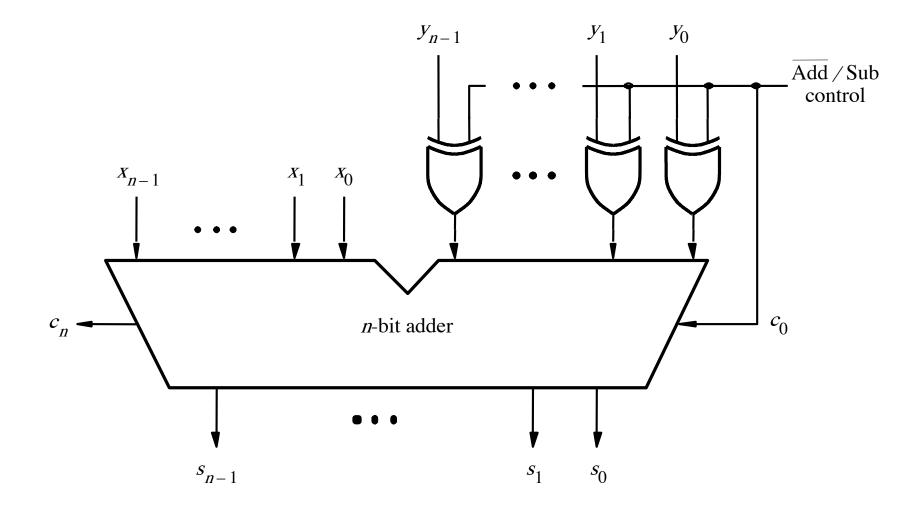
XOR as a repeater



XOR as an inverter

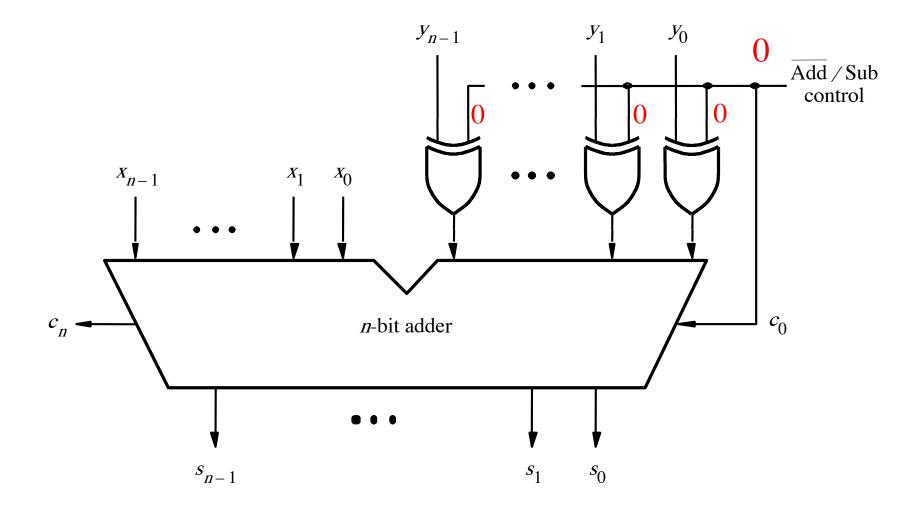


Addition: when control = 0



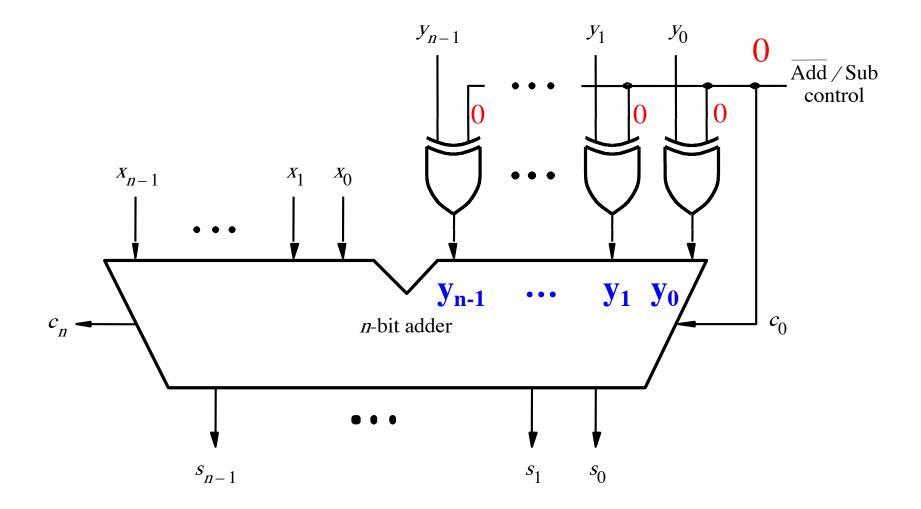
[Figure 3.12 from the textbook]

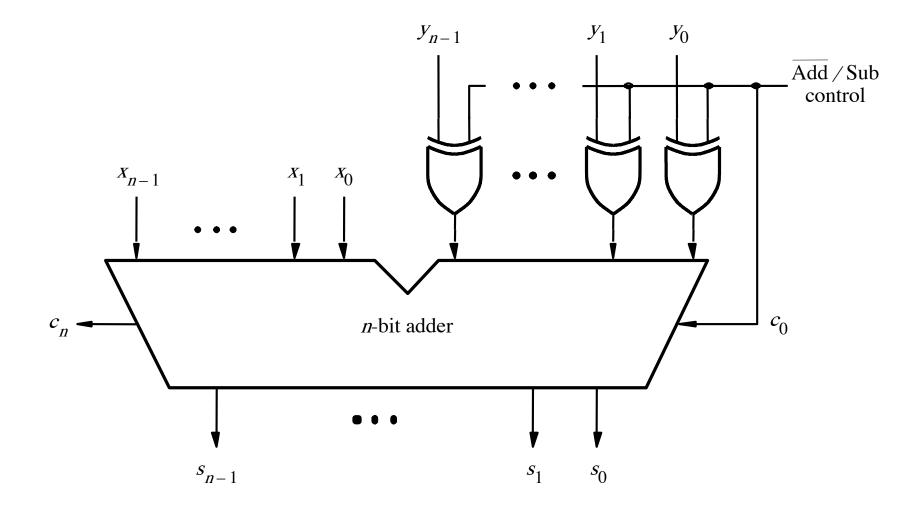
Addition: when control = 0

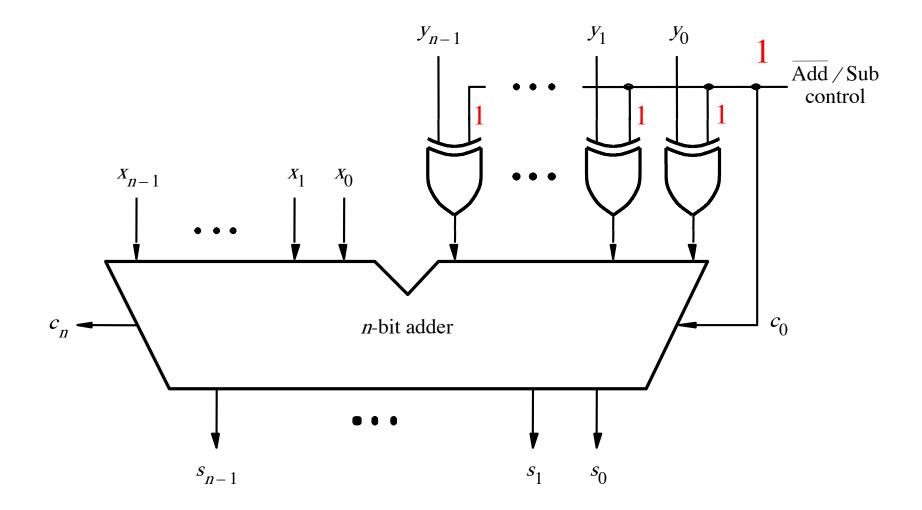


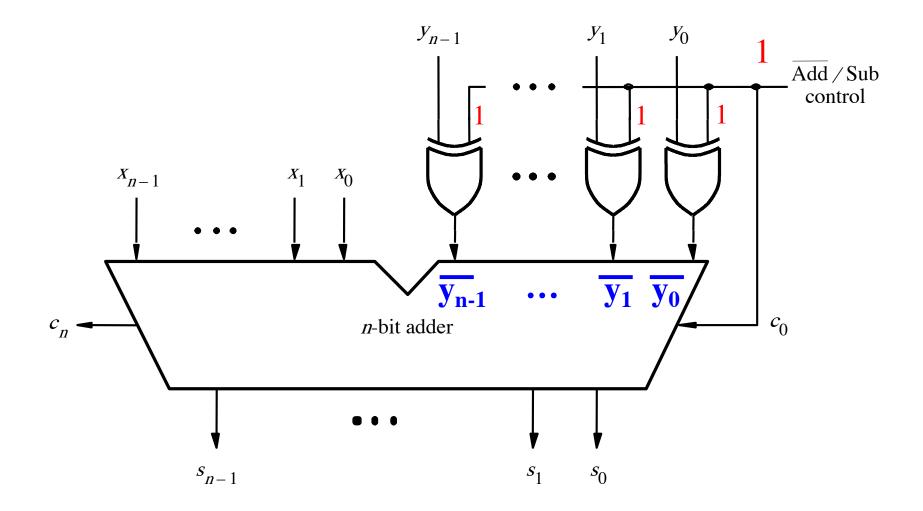
[Figure 3.12 from the textbook]

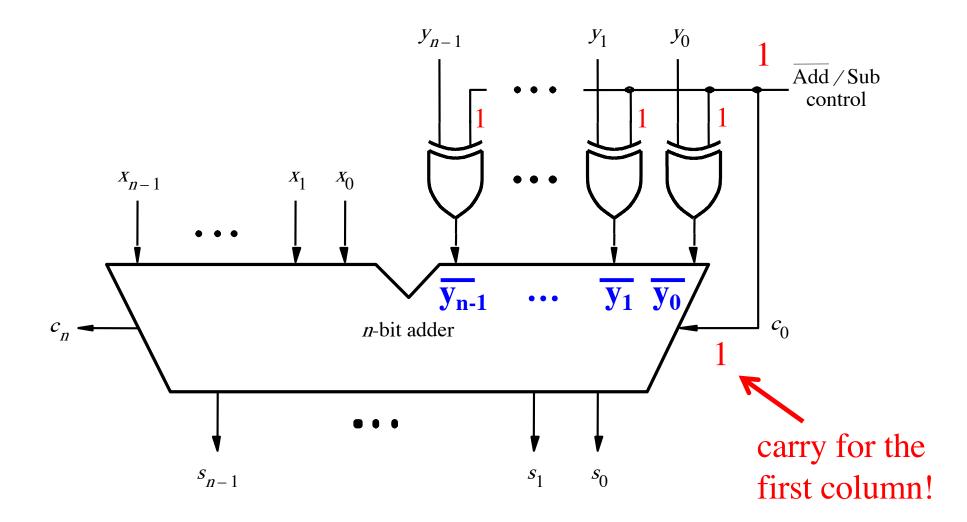
Addition: when control = 0











[Figure 3.12 from the textbook]

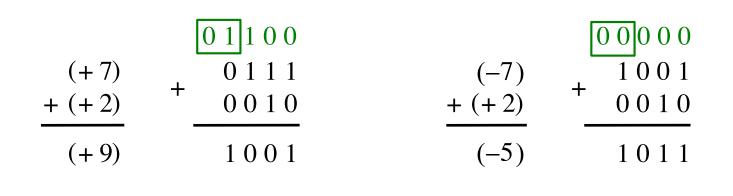
$$\begin{array}{c} (+7) \\ + (+2) \\ (+9) \end{array} + \begin{array}{c} 0 \ 1 \ 1 \ 1 \\ 0 \ 0 \ 1 \ 0 \\ \end{array} + \begin{array}{c} (-7) \\ + (+2) \\ (-5) \end{array} + \begin{array}{c} 1 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 0 \\ \end{array}$$

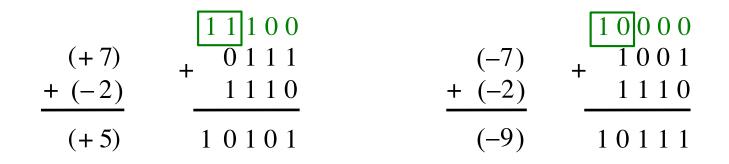
(+7) + (-2)	$+ \begin{array}{c} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{array}$	(-7) + (-2)	+ $\begin{array}{c} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}$
(+ 5)	10101	(-9)	10111

	01100		00000
(+7) + (+2)	$+ \begin{array}{c} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array}$	(-7) + (+2)	1 0 0 1 0 0 1 0
(+9)	1001	(-5)	1011

	$1\ 1\ 1\ 0\ 0$		$1\ 0\ 0\ 0\ 0$
(+7)	0 111	(-7)	1 001
+ (-2)	1110	+ (-2)	1110
(+ 5)	10101	(-9)	10111

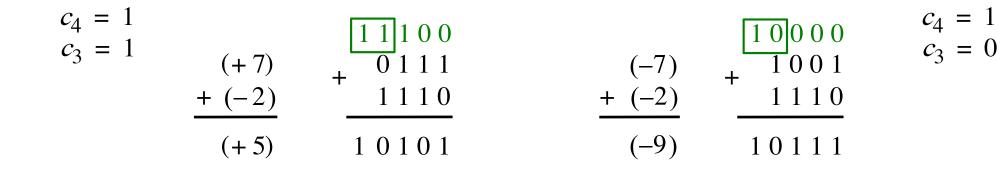
Include the carry bits: $c_4 c_3 c_2 c_1 c_0$





Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

$c_4 = 0$ $c_3 = 1$	(+ 7) + (+ 2)	$ \begin{array}{r} 0 1 1 0 0 \\ + 0 1 1 1 \\ 0 0 1 0 \end{array} $	(-7) + (+ 2)	$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ + & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} $	$c_4 = 0$ $c_3 = 0$
	(+9)	1001	(-5)	1011	



Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

$\begin{array}{c} c_4 = 0\\ c_3 = 1 \end{array}$	(+7) + (+2)	$ \begin{array}{r} 0 1 1 0 0 \\ + 0 1 1 1 \\ 0 0 1 0 \end{array} $	+
	(+9)	1001	

$$(-7) + \frac{1001}{0010} + \frac{1001}{0010} + \frac{1001}{1011}$$

 $c_4 = 0$ $c_3 = 0$

 $c_4 = 1$ $c_3 = 1$ $c_4 = 1$ $c_3 = 0$ $\begin{array}{c}
 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 1
 \end{array}$ 1 1 1 0 0 0111 (+7)(-7) +1 1 1 0 1110 + (-2) +(-2)(-9)(+5)10111 1 0 1 0 1

Overflow occurs only in these two cases.

$\begin{array}{c} c_4 = 0\\ c_3 = 1 \end{array}$	(+7) + (+2)	$ \begin{array}{r} 0 1 1 0 0 \\ + 0 1 1 1 \\ 0 0 1 0 \end{array} $	
	(+9)	1001	

$$(-7) + (+2) + (-5) +$$

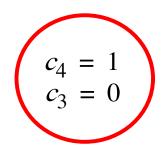
 $c_4 = 0$ $c_3 = 0$

 $c_4 = 1$ $c_3 = 1$ (+7)++(-2)

(+5)

1 1 1 0 0 0111 1110 1 0 1 0 1

 $\begin{array}{c}
 1 & 0 & 0 & 0 \\
 1 & 0 & 0 & 1
 \end{array}$ (-7) 1 1 1 0 + (-2) (-9) 10111



Overflow = $c_3 \overline{c}_4 + \overline{c}_3 c_4$

$c_4 = 0$ $c_3 = 1$	(+ 7) + (+ 2)	+	$ \begin{array}{c} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{array} $
	(+9)		1001

 $c_4 = 1$

 $c_3 = 1$

$$(-7) + (+2) + (-5) +$$

 $c_4 = 0$ $c_3 = 0$

 $c_4 = 1$ $c_3 = 0$

1 1 1 0 0 10000 1001 (+7) $\overline{0}$ 1 1 1 (-7)++ 1 1 1 0 1110 + (-2) +(-2)(-9) (+5) 10111 1 0 1 0 1

Overflow =
$$c_3\overline{c}_4 + \overline{c}_3c_4$$

XOR

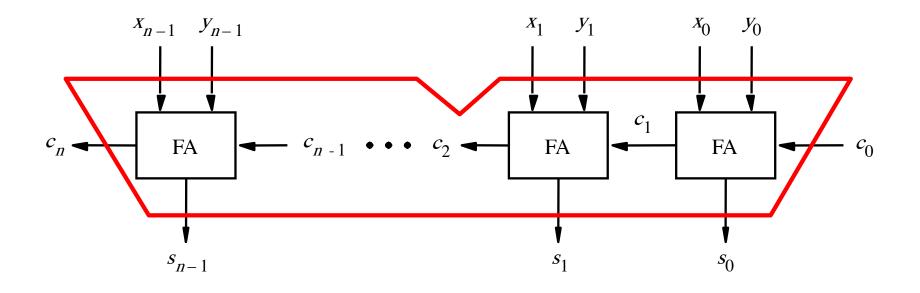
Calculating overflow for 4-bit numbers with only three significant bits

Overflow = $c_3\overline{c}_4 + \overline{c}_3c_4$ = $c_3 \oplus c_4$

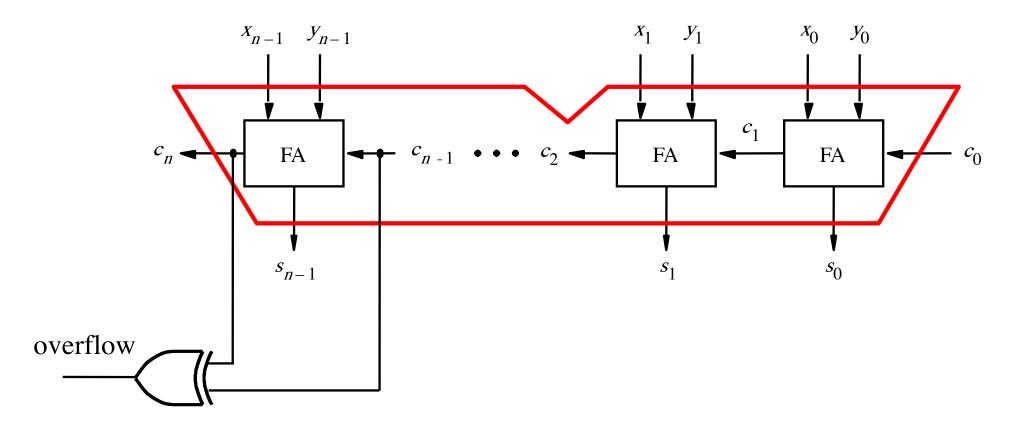
Calculating overflow for n-bit numbers with only n-1 significant bits

Overflow = $c_{n-1} \oplus c_n$

Detecting Overflow



Detecting Overflow (with one extra XOR)



Another way to look at the overflow issue

$$S = S_3 S_2 S_1 S_0$$

Another way to look at the overflow issue

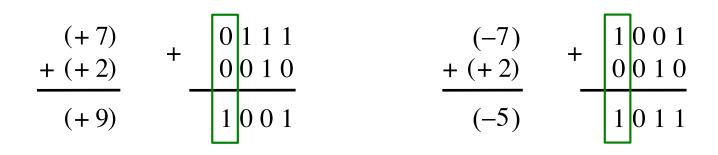
+
$$\begin{array}{cccc} \mathbf{X} = & \mathbf{x}_3 & \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_0 \\ \mathbf{Y} = & \mathbf{y}_3 & \mathbf{y}_2 & \mathbf{y}_1 & \mathbf{y}_0 \end{array}$$

S = $\begin{array}{cccc} \mathbf{S}_3 & \mathbf{S}_2 & \mathbf{S}_1 & \mathbf{S}_0 \end{array}$

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

$$\begin{array}{cccc} (+7) \\ + (+2) \\ (+9) \end{array} + \begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \end{array} + \begin{array}{cccc} (-7) \\ + & (-7) \\ + & (+2) \\ \hline 0 & 0 & 1 & 0 \\ \hline (-5) \end{array} + \begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \end{array}$$

(+7) + (-2)	$\begin{array}{c} + & 0 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 0 \end{array}$	(-7) + (-2)	$\begin{array}{c} + & 1 & 0 & 0 & 1 \\ & 1 & 1 & 1 & 0 \end{array}$
(+ 5)	10101	(-9)	10111



(+7) + (-2)	$+ \begin{array}{c c} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{array}$	(-7) + (-2)	
(+ 5)	10101	(-9)	10111

$$x_{3} = 0$$

$$y_{3} = 1$$

$$s_{3} = 0$$

$$(+7)$$

$$+ (-2)$$

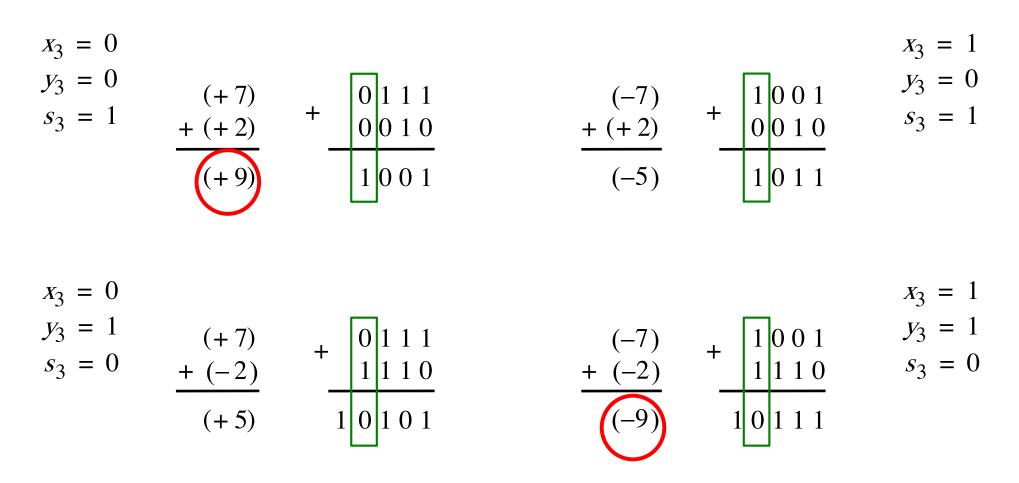
$$(+5)$$

$$1 0 1 0 1$$

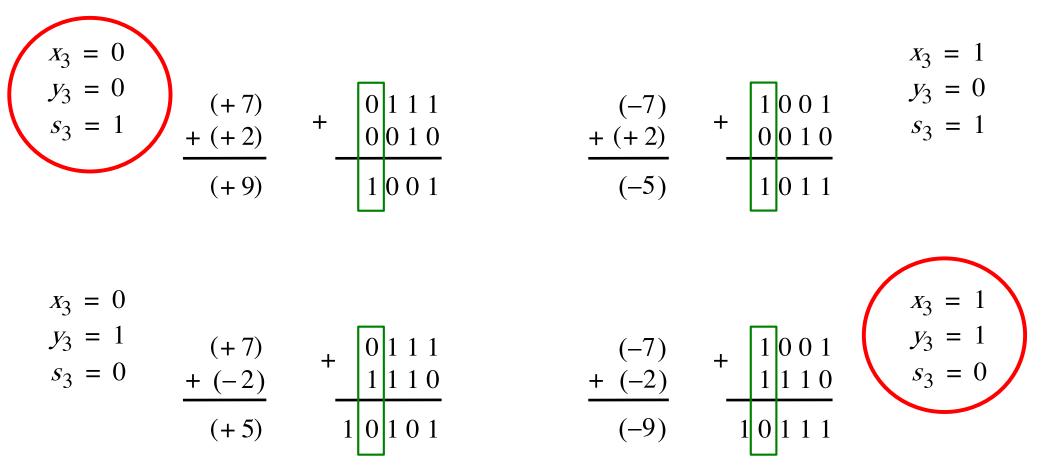
$$\begin{array}{ccc} (-7) \\ + & (-2) \\ \hline (-9) \end{array} + \begin{array}{c} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 \end{array}$$

$$x_3 = 1$$

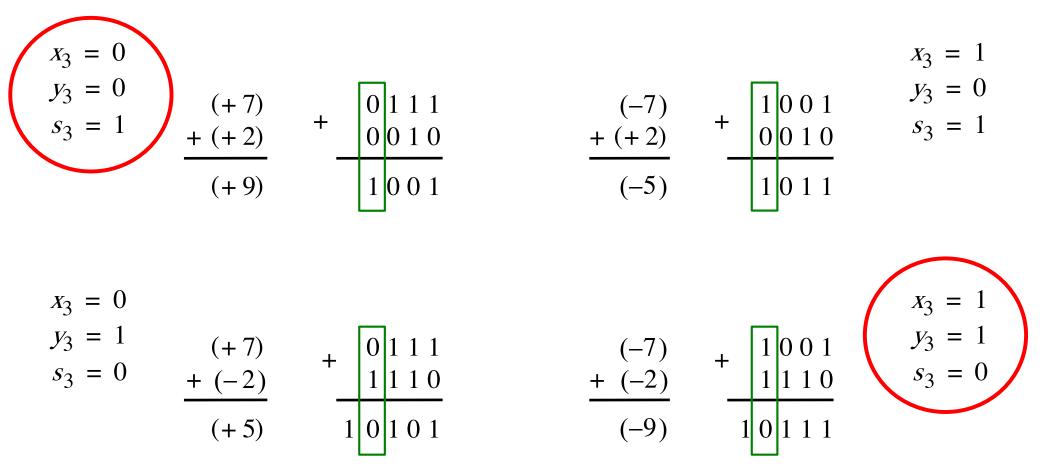
 $y_3 = 1$
 $s_3 = 0$



In 2's complement, both +9 and -9 are not representable with 4 bits.



Overflow occurs only in these two cases.



Overflow = $\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$

Another way to look at the overflow issue

+
$$\begin{array}{c|cccc} \mathbf{X} = & \mathbf{x}_3 & \mathbf{x}_2 & \mathbf{x}_1 & \mathbf{x}_0 \\ \mathbf{Y} = & \mathbf{y}_3 & \mathbf{y}_2 & \mathbf{y}_1 & \mathbf{y}_0 \end{array}$$

 S = $\begin{array}{c|ccccc} \mathbf{s}_3 & \mathbf{s}_2 & \mathbf{s}_1 & \mathbf{s}_0 \end{array}$

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Overflow = $\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$

Questions?

THE END