

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Latches

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• HW 7 is due next Monday (Oct 21) @ 4pm

Administrative Stuff

• HW 8 is out

• It is due on Monday (Oct 28)

Chapter 5

Control of an alarm system

Motivation

So far, our circuits have been converting inputs to outputs without storing any data.

To do more advanced things (e.g., to build computers) we need components that can store data.

Can we make a component that "remembers"

using the components that we know already?

A simple memory element

[Figure 5.2 from the textbook]

The circuit will stay in this state indefinitely.

The circuit will stay in this state indefinitely.

A Strange Loop

Building a NOT gate with a NAND gate

Thus, the two truth tables are equal!

Building a NOT gate with a NOR gate

Thus, the two truth tables are equal!

Basic Latch

What is a latch?

A memory element with NOR gates

[Figure 5.3 from the textbook]

Two Different Ways to Draw the Same Circuit

[Figure 5.3 & 5.4 from the textbook]

Two Different Ways to Draw the Same Circuit

[Figure 5.3 & 5.4 from the textbook]

Before We Analyze the Basic Latch Let's Look at a Two Simpler Examples with Feedback

x	f_t	f_{t+1}
0	0	
0	1	
1	0	
1	1	

x	f_t	f_{t+1}
0	0	1
0	1	0
1	0	0
1	1	0

If x = 0, then *f* is negated. If x = 1, then *f* is driven to 0.

Key Observation

If a NOR's control line is 0, then that NOR just *negates* its data line. If the control line is 1, then the NOR's output is *driven* to 0, ignoring its data line.

x	g_t	g_{t+1}
0	0	
0	1	
1	0	
1	1	

x	g_t	g_{t+1}
0	0	1
0	1	1
1	0	1
1	1	0

If x = 0, then g is driven to one. If x = 1, then g is negated.

Key Observation

If a NAND's control line is 1, then that NAND just *negates* its data line. If the control line is 0, then the NAND's output is *driven* to 1, ignoring its data line.

Output Oscillations

What would happen to **g** if we keep **x**=1 for a long time?

Output Oscillations

What would happen to **g** if we keep **x=1** for a long time?

Output Oscillations

What would happen to g if we keep x=1 for a long time?

 t_{pd} is the propagation delay through the NAND gate, which is small, but not zero.

Back to the Basic Latch

The Basic Latch

[Figure 5.3 from the textbook]

The Basic Latch

[Figure 5.3 from the textbook]

S	Q_a	$Q_b = \text{NOR}(S, Q_a)$	R	Q_b	$Q_a = \text{NOR}(R, Q_b)$
0	0		0	0	
0	1		0	1	
1	0		1	0	
1	1		1	1	

S	R	Q_{t+1}
0	0	
0	1	
1	0	
1	1	

S	R	Q_{t+1}
0	0	Q_t
0	1	0
1	0	1
1	1	0

S	R	$Q_a(t+1)$	$Q_b(t+1)$
0	0		
0	1		
1	0		
1	1		

S	R	$Q_a(t+1)$	$Q_b(t+1)$
0	0	$Q_a(t)$	$Q_b(t)$
0	1	0	1
1	0	1	0
1	1	0	0

S	R	$Q_a(t+1)$	$Q_b(t+1)$	
0	0	$Q_a(t)$	$Q_b(t)$	
0	1	0	1	
1	0	1	0	
1	1	0	0	

Latch Reset Set Undesirable

Circuit and Characteristic Table

(a) Circuit

S	R	Qa	Q_b	_
0	0	0/1	1/0	(no change)
0	1	0	1	
1	0	1	0	
1	1	0	0	

(b) Characteristic table

[Figure 5.4a,b from the textbook]

NOR Gate Truth table

NOR Gate

Circuit and Characteristic Table

(a) Circuit

 $x_1 + x_2$

(b) Characteristic table

A truth table should take the state into account. A characteristic table takes only the inputs into account.

NOR Gate

 x_1

 x_2

[Figure 5.4a,b from the textbook]

NOR Gate Truth table

Circuit and Characteristic Table

 $\overline{x_1 + x_2}$

NOR Gate

 x_1

 x_2

[Figure 5.4a,b from the textbook]

NOR Gate Truth table

Oscillations and Undesirable States

- When S=1 and R=1 both outputs of the latch are equal to 0, i.e., Q_a=0 and Q_b=0.
- Thus, the two outputs are no longer complements of each other.
- This is undesirable as many of the circuits that we will build later with these latches rely on the assumption that the two outputs are always complements of each other.
- (This is obviously not the case for the basic latch, but we will patch it later to eliminate this problem).

Oscillations and Undesirable States

- An even bigger problem occurs when we transition from S=R=1 to S=R=0.
- When S=R=1 we have Q_a=Q_b=0. After the transition to S=R=0, however, we get Q_a=Q_b=1, which would immediately cause Q_a=Q_b=0, and so on.
- If the gate delays and the wire lengths are identical, then this oscillation will continue forever.
- In practice, the oscillation dies down and the output settles into either Q_a=1 and Q_b=0 or Q_a=0 and Q_b=1.
- The problem is that we can't predict which one of these two it will settle into.

(b) Characteristic table

[Figure 5.4 from the textbook]

S	R	Qa	Q_b	_
0	0	0/1	1/0	(no change)
0	1	0	1	
1	0	1	0	
1	1	0	0	

_	Q_b	Qa	R	S	
(no change)	1/0	0/1	0	0	
	1	0	1	0	
	0	1	0	1	
	0	0	1	1	

(a) Circuit

(a) Circuit

(a) Circuit

(a) Circuit

(a) Circuit

(b) Characteristic table

For a brief moment the latch goes through the undesirable state $Q_a=0$ and $Q_b=0$.

(a) Circuit

(b) Characteristic table

But these zeros loop around ...

(b) Characteristic table

... and set it to $Q_a=1$ and $Q_b=0$.

(b) Characteristic table

The new values also loop around ...

(c) Timing diagram

(a) Circuit

(b) Characteristic table

... but they leave the outputs the same.

(b) Characteristic table

[Figure 5.4 from the textbook]

(b) Characteristic table

(b) Characteristic table

Basic Latch with NAND Gates

Circuit for the Basic Latch with NAND Gates

Notice that in the NAND case the two inputs are swapped and negated.

The labels of the outputs are the same in both cases.

Basic Latch (with NAND Gates)

SR Latch

SR Latch

Circuit and Characteristic Table

NAND Gate Truth table

Basic Latch (with NOR Gates)

S	R	Q _a	Q_b	_
0	0	0/1	1/0	(no change)
0	1	0	1	
1	0	1	0	
1	1	0	0	

Basic Latch (with NAND Gates)

S R	$Q_a Q_b$	_
0 0	0/1 1/0	(no change)
0 1	0 1	
1 0	1 0	
1 1	1 1	

Basic Latch (with NOR Gates)

_	S	R	Q _a	Q_b	_	
-	0	0	0/1	1/0	(no change)	Latch
	0	1	0	1		Reset
	1	0	1	0		Set
	1	1	0	0		Undesirable

Basic Latch (with NAND Gates)

$Q_a Q_b$	_
/1 1/0	(no change) Latch
) 1	Reset
1 0	Set
1 1	Undesirable
	 Q_a Q_b 1/0 1 0 1 1 1

Basic Latch (with NOR Gates)

 $Q_a Q_b$

1

0

0

0

0

0/1 1/0 (no change)

S R

0

0

1

1

0

1

0

1

Basic Latch (with NAND Gates)

The two characteristic tables are the same (except for the last row, which is the undesirable configuration).

Latch

Reset

Undesirable

Set

Oscillations and Undesirable States

 The basic latch with NAND gates also suffers form oscillation problems, similar to the basic latch implemented with NOR gates.

• Try to do this analysis on your own.

Gated SR Latch

Motivation

- The basic latch changes its state when the input signals change.
- It is hard to control when these input signals will change and thus it is hard to know when the latch may change its state.
- We want to have something like an Enable input.
- In this case it is called the "Clock" input because it is desirable for the state changes to be synchronized

Circuit Diagram for the Gated SR Latch

[Figure 5.5a from the textbook]

Circuit Diagram for the Gated SR Latch

This is the "gate" of the gated latch

Circuit Diagram for the Gated SR Latch

Notice that these are complements of each other

Circuit Diagram and Characteristic Table for the Gated SR Latch

Circuit Diagram and Graphical Symbol for the Gated SR Latch

[Figure 5.5a,c from the textbook]

Timing Diagram for the Gated SR Latch

[Figure 5.5c from the textbook]

[Figure 5.6 from the textbook]

In this case the "gate" is constructed using NAND gates! Not AND gates.

Also, notice that the positions of S and R are now swapped.

Finally, notice that when Clk=1 this turns into the basic latch with NAND gates, i.e., the \overline{SR} Latch.

Gated SR latch with NAND gates

Gated SR latch with NAND gates

Graphical symbols are the same

Gated SR latch with NAND gates

Clk	S	R	Q(t+1)
0	x	x	Q(t) (no change)
1	0	0	Q(t) (no change)
1	0	1	0
1	1	0	1
1	1	1	x (undesirable

Characteristic tables are the same

Gated D Latch

Motivation

- Dealing with two inputs (S and R) could be messy.
 For example, we may have to reset the latch before some operations in order to store a specific value but the reset may not be necessary depending on the current state of the latch.
- Why not just have one input and call it D.
- The D latch can be constructed using a simple modification of the SR latch.

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]
Circuit Diagram for the Gated D Latch

This is the only new thing here.

[Figure 5.7a from the textbook]

Circuit Diagram and Characteristic Table for the Gated D Latch

Note that it is now impossible to have S=R=1.

[Figure 5.7a,b from the textbook]

Circuit Diagram and Characteristic Table for the Gated D Latch

When Clk=1 the output follows the D input. When Clk=0 the output cannot be changed.

[Figure 5.7a,b from the textbook]

Circuit Diagram and Graphical Symbol for the Gated D Latch

[Figure 5.7a,c from the textbook]

Timing Diagram for the Gated D Latch

[Figure 5.7d from the textbook]

Setup and hold times

Setup time (t_{su}) – the minimum time that the D signal must be stable prior to the negative edge of the Clock signal.

Hold time (t_h) – the minimum time that the D signal must remain stable after the negative edge of the Clock signal.

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

[https://en.wikibooks.org/wiki/Digital_Circuits/Latches]

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

[https://en.wikibooks.org/wiki/Digital_Circuits/Latches]

Some Practical Examples

Different Types of Switches

Different Types of Switches

Single Pole, Double Throw = SPDT

Single Pole, Double Throw = SPDT

Single-pole—single-throw manual switch

Double-pole—double-throw manual switch

http://www.industrial-electronics.com/Electricity-Refrigeration-Heating-Air-Conditioning_5b.html

The following examples came from this book

A Simple Circuit

[Platt 2009]

Let's Take a Closer Look at This

[Platt 2009]

A Similar Example with NAND Gates

[Platt 2009]

Questions?

THE END