

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Algorithmic State Machine (ASM) Charts

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © *Alexander Stoytchev*

Administrative Stuff

- Homework 12 is out
- It is due on Monday Dec 2 @ 4pm

Administrative Stuff

- The FINAL exam is scheduled for
- Thursday Dec 19 @ 2:00 4:00 PM

• It will be in this room.

https://www.registrar.iastate.edu/students/exams/fallexams

	First Contact	E	Exam Day, Date, and	d Time
Monday	7:30-8:29 AM	Monday	December 16	7:30 AM
Monday	8:30-9:29 AM	Wednesday	December 18	7:30 AM
Monday	9:30-10:29 AM	Monday	December 16	9:45 AM
Monday	10:30-11:29 AM	Tuesday	December 17	9:45 AM
Monday	11:30 AM-12:29 PM	Thursday	December 19	12:00 PM
Monday	12:30-1:29 PM	Tuesday	December 17	2:15 PM
Monday	1:30-2:29 PM	Monday	December 16	12:00 PM
Monday	2:30-3:29 PM	Wednesday	December 18	12:00 PM
Monday	3:30-4:29 PM	Thursday	December 19	2:15 PM

Final Exam Format

- The exam will cover: Chapter 1 to Chapter 6, and Sections 7.1-7.2
- Emphasis will be on Chapter 5, 6, and 7

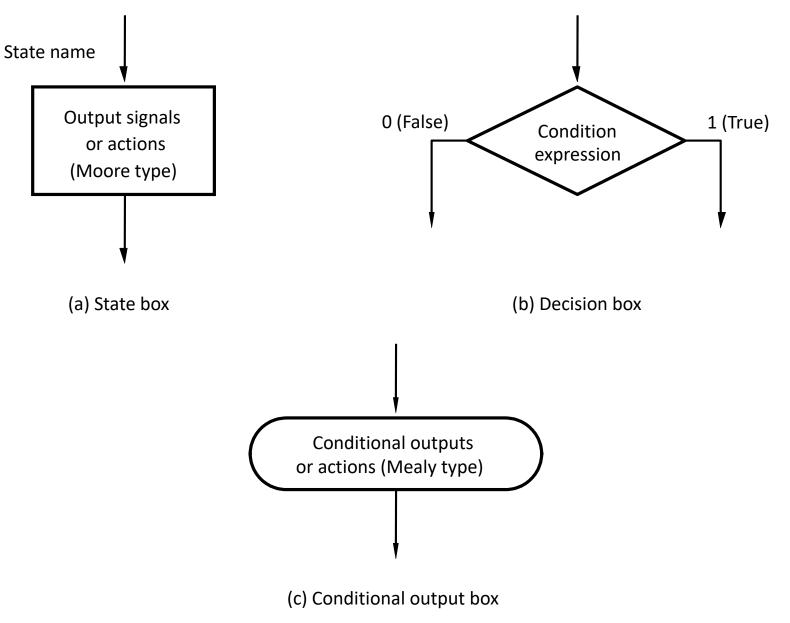
- The exam will be closed book but open notes.
- You can bring up to 5 pages of handwritten or typed notes.

Final Exam Format

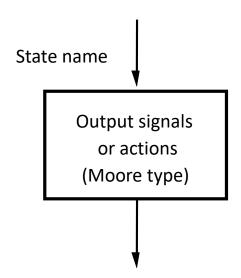
- The exam will be out of 130 points
- You need 95 points to get an A on this exam
- It will be great if you can score more than 100 points.
 - but you can't roll over your extra points ⊗

Topics for the Final Exam

- K-maps for 2, 3, and 4 variables
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adding and subtracting
- Serial adder
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Counters (up, down, synchronous, asynchronous)
- Registers and Register Files

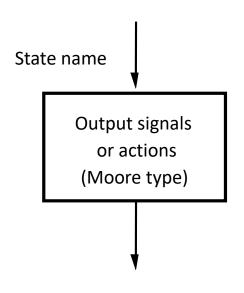

Topics for the Final Exam

- Synchronous Sequential Circuits
- FSMs
- Moore Machines
- Mealy Machines
- State diagrams, state tables, state-assigned tables
- State minimization
- Designing a counter
- Arbiter Circuits
- Reverse engineering a circuit
- ASM Charts
- Register Machines and programs for them
- ALU and Simple Processors
- Assembly and machine language
- Something from Star Wars

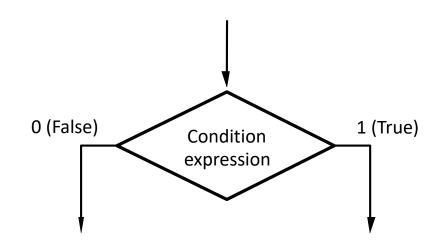

Reading Material for Next Lecture

- "The Seven Secrets of Computer Power Revealed" by Daniel Dennett.
- This is Chapter 24 in his book "Intuition Pumps and Other Tools for Thinking", 2013

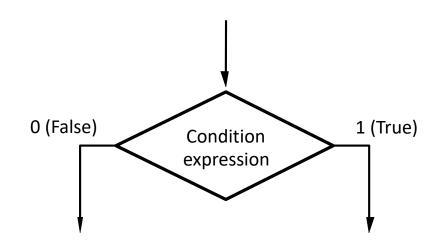
Elements used in ASM charts



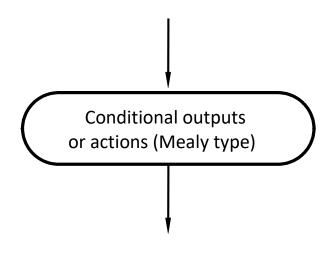
State Box


[Figure 6.81a from the textbook]

State Box


- Indicated with a rectangle
- Equivalent to a node in the State diagram
- The name of the state is written outside the box
- Moore-type outputs are written inside the box
- Only the output that must be set to 1 is written (by default, if an output is not listed it is set to 0)

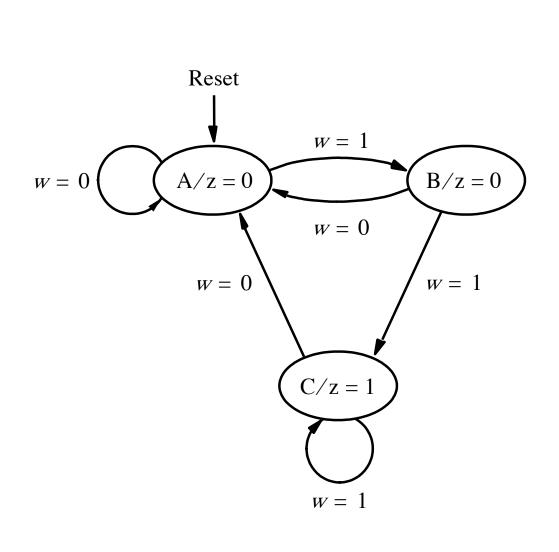
Decision Box

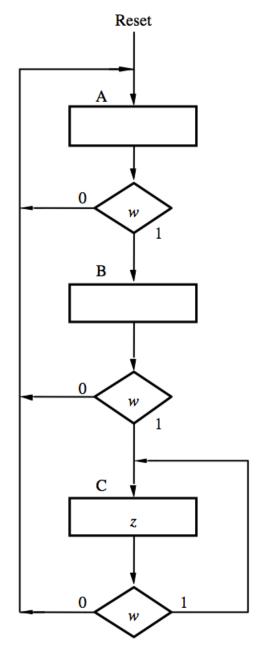

[Figure 6.81b from the textbook]

Decision Box

- Indicated with a diamond shape
- Used for a condition expression that must be tested
- The exit path is chosen based on the outcome of the test
- The condition is on one or more inputs to the FSM
- Shortcut notation: w means "is w equal to 1?"

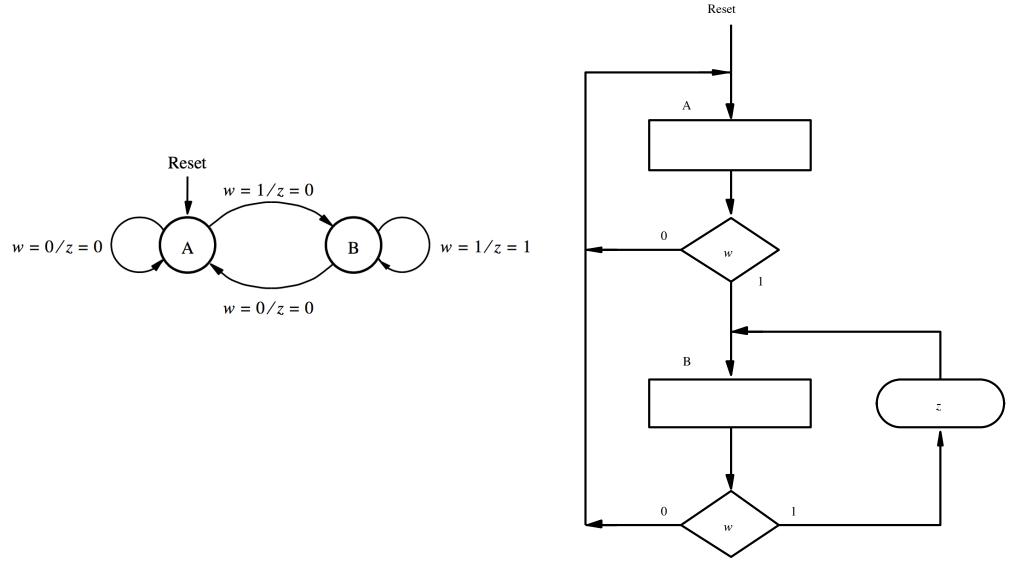
Conditional Output Box




- Indicated with an oval shape
- Used for a Mealy-type output signals
- The outputs depend on the state variables and inputs
- The condition that determines when such outputs are generated is placed in a separate decision box

Some Examples

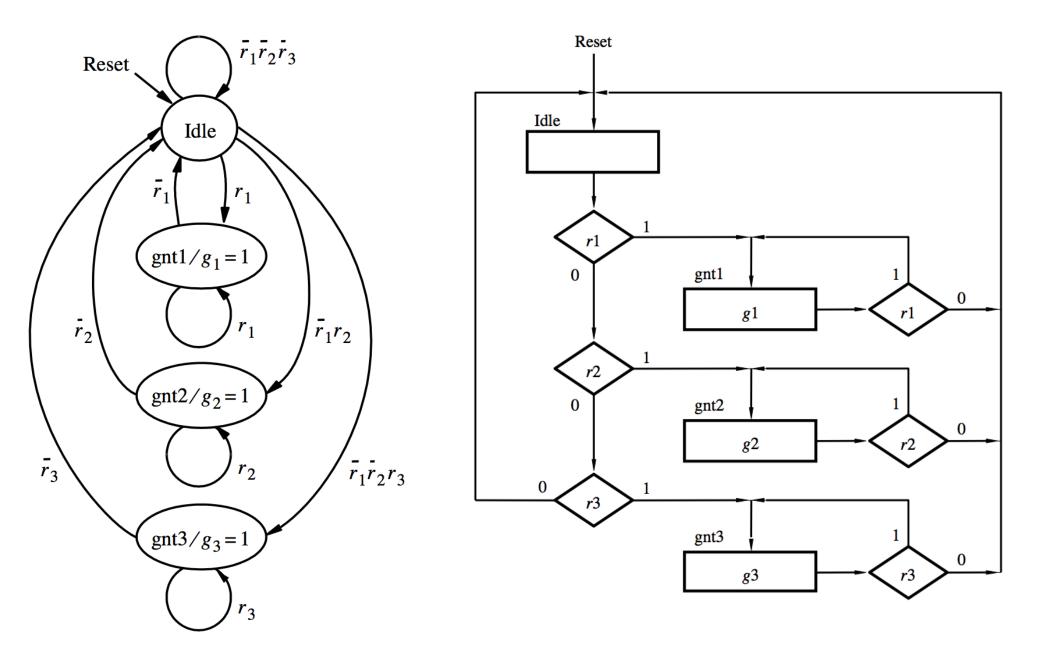
ASM chart



[Figure 6.3 from the textbook]

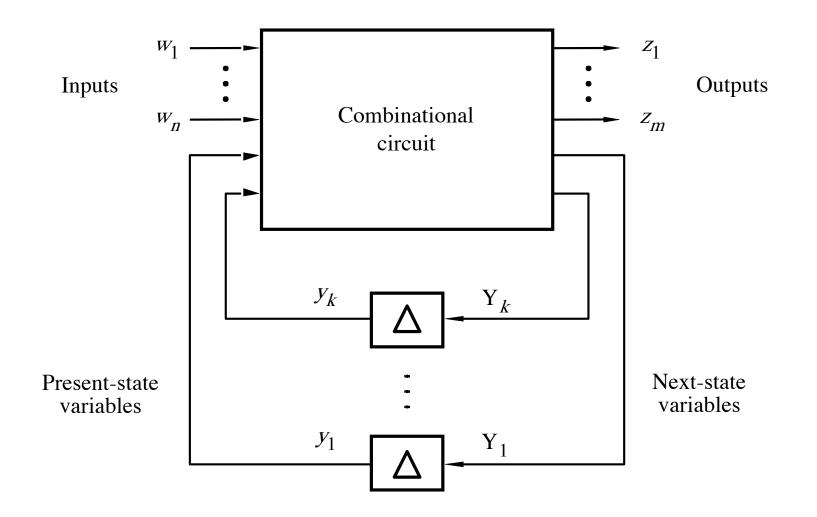
[Figure 6.82 from the textbook]

ASM chart



[Figure 6.23 from the textbook]

[Figure 6.83 from the textbook]


ASM chart

ASM Chart is different from a Flow Chart

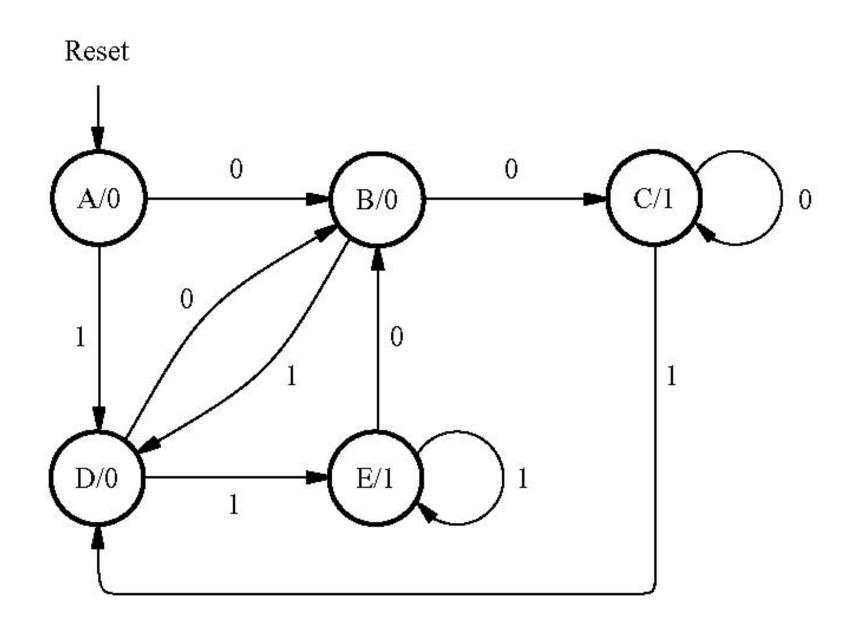
- The ASM chart implicitly includes timing info
- It is assumed that the underlying FSM changes from one state to another on every active clock edge
- Flow charts don't make that assumption.

The general model for a sequential circuit

The general model for a sequential circuit

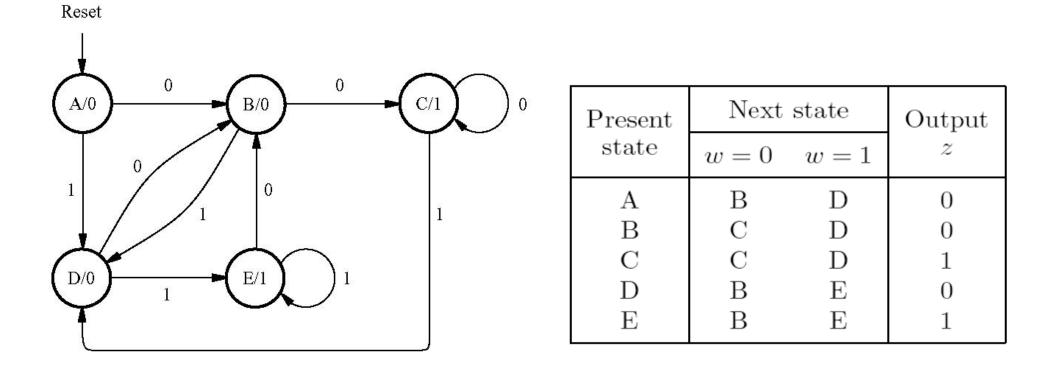
$M = (W, Z, S, \varphi, \lambda)$

- W, Z, and S are finite, nonempty sets of inputs, outputs, and states, respectively.
- φ is the state transition function, such that $S(t+1) = \varphi[W(t), S(t)]$.
- λ is the output function, such that $\lambda(t) = \lambda[S(t)]$ for the Moore model and $\lambda(t) = \lambda[W(t), S(t)]$ for the Mealy model.


Examples of Solved Problems

Example 6.12

Goal


- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1; otherwise to 0.

State Diagram

[Figure 6.86 from the textbook]

State Table for the FSM

[Figure 6.87 from the textbook]

State Table for the FSM

Present	Next	Output	
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
С	\mathbf{C}	D	1
D	В	Ε	0
Ε	В	Ε	1

Present	Next state		Output
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
С	\mathbf{C}	D	1
D	В	Ε	0
Ε	В	Ε	1

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

 $z = y_3 + \overline{y}_1 y_2$

How can we derive this expression?

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Е	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

Truth Table for the Output z

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y 3	<i>Y</i> ₂	<i>Y</i> 1	z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth Table for the Output z

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y 3	<i>y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

Truth Table for the Output z

]	Present state $y_3y_2y_1$		Next	state			
				w = 0	w = 1	0	utp	out
				$\begin{array}{c c} y_3y_2y_1 \\ Y_3Y_2Y_1 & Y_3Y_2Y \end{array}$		$Y_3Y_2Y_1$	z	
Α		000		001	011		0	
В		001		010	011		0	
\mathbf{C}		010		010	011		1	
D		011		001	100		0	
Е		100		001	100		1	
	-	101		ddd	ddd	•	d	
		110		ddd	ddd		d	
		111		ddd	ddd		d	

y 3	y_2	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

K-Map for the Output z

10

1

d

Z

0

0

0

1

d

d

d

					Z	<i>Y</i> 3 <i>Y</i>	2		
					\mathcal{Y}_{I}		00	01	11
		Next	state			0	0	1	d
	Present	TOAU	State	Out	tput	1	0	0	d
	state	w = 0	w = 1		put				
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	'	z		y 3	y 2	Y 1
Α	000	001	011	(0		0	0	0
В	001	010	011		0		0	0	1
\mathbf{C}	010	010	011		1		0	1	0
D	011	001	100		0		0	1	1
Ε	100	001	100		1		1	0	0
	101	ddd	ddd	(d	•	1	0	1
	110	ddd	ddd	(d		1	1	0
	111	ddd	ddd	0	d		1	1	1

The Expression for the Output z

				Z	<i>y</i> ₃ <i>y</i>	2	y ₁	Y ₂		Y 3
				\mathcal{Y}_{I}		00	01	11	10	
		Next	state		0	0	1	d	1	
	Present	Itert			1	0	0	d	d	
	state	w = 0	w = 1	Output		L				
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z		y 3	<i>y</i> ₂	<i>Y</i> 1	z	
А	000	001	011	0		0	0	0	0	
В	001	010	011	0		0	0	1	0	
\mathbf{C}	010	010	011	1		0	1	0	1	
D	011	001	100	0		0	1	1	0	
Е	100	001	100	1		1	0	0	1	
	101	ddd	ddd	d	•	1	0	1	d	
	110	ddd	ddd	d		1	1	0	d	
	111	ddd	ddd	d		1	1	1	d	

State-Assigned Table for the FSM

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
А	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
$Y_1 = w\overline{y}_1\overline{y}_3 + v$	$w\overline{y}_2\overline{y}_3 + \overline{w}y_1$	$y_2 + \overline{w}\overline{y}_1\overline{y}_2$		
$Y_2 = y_1 \overline{y}_2 + \overline{y}_1$	$y_2 + w\overline{y}_2\overline{y}_3$			
$Y_3 = wy_3 + wy$	1 <i>Y</i> 2		How can we	derive these

How can we derive these expressions?

Truth Table for Y₃

	Present	Next	Next state			
	state	w = 0 $w = 1$		Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z		
Α	000	001	011	0		
В	001	010	011	0		
\mathbf{C}	010	010	011	1		
D	011	001	100	0		
Ε	100	001	100	1		
	101	ddd	ddd	d		
	110	ddd	ddd	d		
	111	<mark>dd</mark> d	<mark>d</mark> dd	d		

w	y 3	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₃	<i>Y</i> ₂	Y ₁
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	d		
0	1	1	0	d		
0	1	1	1	d		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	d		
1	1	1	0	d		
1	1	1	1	d		

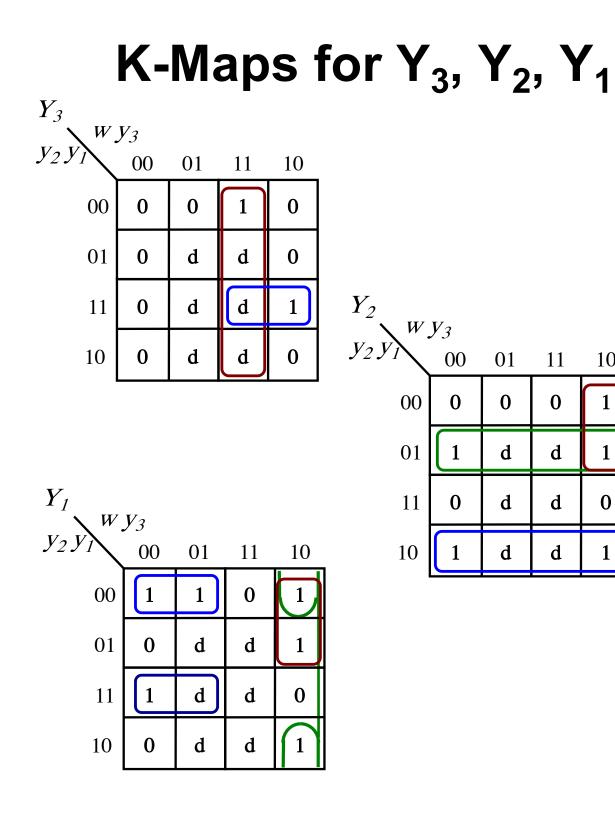
Truth Table for Y₂

Present	Next	state	
state	w = 0	w = 1	Output
$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
000	001	011	0
001	010	0 <mark>1</mark> 1	0
010	010	011	1
011	001	100	0
100	001	100	1
101	ddd	ddd	d
110	<u>d</u> dd	<mark>dd</mark> d	d
111	ddd.	ddd	d

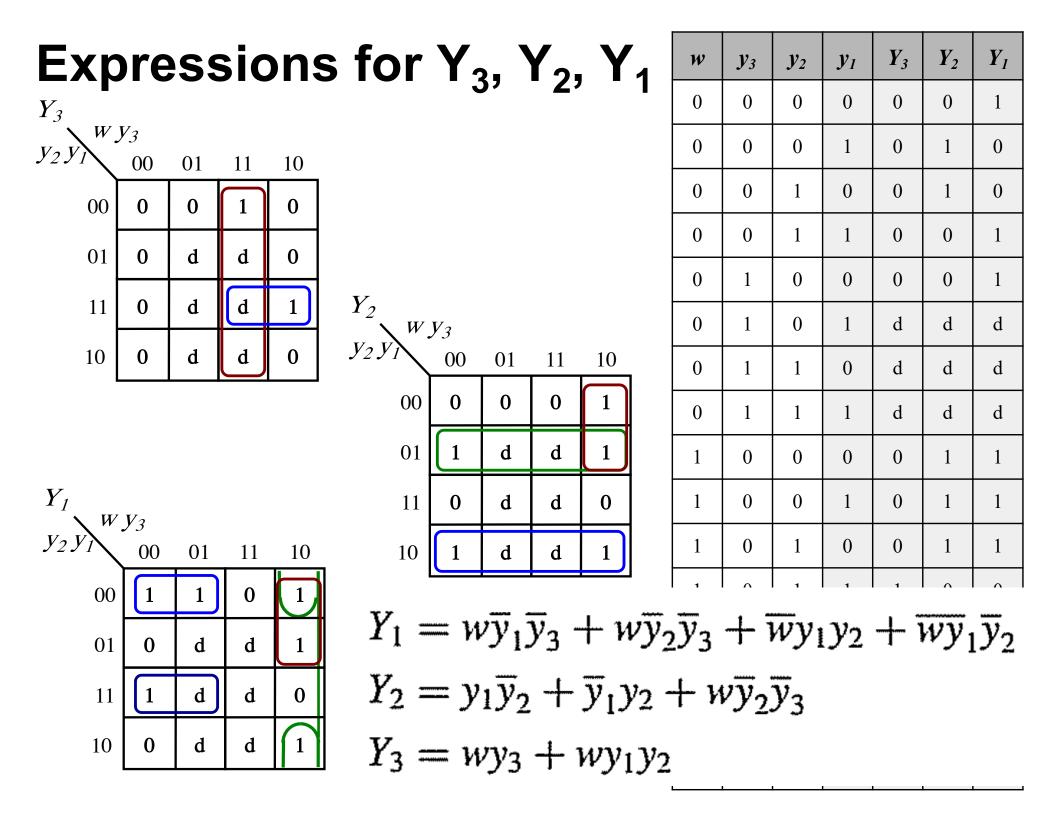
w	y 3	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	Y ₁
0	0	0	0	0	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	d	d	
0	1	1	0	d	d	
0	1	1	1	d	d	
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	1	
1	0	1	1	1	0	
1	1	0	0	1	0	
1	1	0	1	d	d	
1	1	1	0	d	d	
1	1	1	1	d	d	

A B C D E

Truth Table for Y₁


Present	Next		
state	w = 0	w = 1	Output
$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
000	001	011	0
001	010	011	0
010	010	011	1
011	001	100	0
100	001	100	1
101	ddd	ddd	d
110	<u>dd</u> d	dd <mark>d</mark>	d
111	ddd	ddd	d
	$\begin{array}{c} y_3y_2y_1 \\ 000 \\ 001 \\ 010 \\ 011 \\ 100 \\ 101 \\ 110 \\ 110 \end{array}$	Present $w = 0$ $y_3y_2y_1$ $W = 0$ 000 $Y_3Y_2Y_1$ 000 001 001 010 010 010 011 001 100 001 101 ddd 110 ddd	$\begin{array}{c} \text{state} \\ y_3y_2y_1 \\ \hline \\ & 000 \\ \hline \\ & 001 \\ \hline \\ & 011 \\ \hline \\ & 001 \\ \hline \\ & 011 \\ \hline \\ & 001 \\ \hline \\ & 100 \\ \hline \\ \\ \\ & 100 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

W	y 3	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₃	<i>Y</i> ₂	Y ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d


A B C D E

	K-	Ma	ap	s 1	for Y	3,	Y_2	, Y	1
	<i>V3</i> 00	01	11	10			_		-
00	0	0	1	0					
01	0	d	d	0					
11	0	d	d	1	$\begin{array}{c} Y_2 \\ Y_2 \\ Y_2 \\ Y_1 \end{array}^W$	Va			
10	0	d	d	0	$y_2 y_1^W$	93 00	01	11	10
-					00	0	0	0	1
					01	1	d	d	1
$Y_1 $ W	V_3				11	0	d	d	0
$y_2 y_1^W$	<i>Y</i> 3 00	01	11	10	10	1	d	d	1
00	1	1	0	1					
01	0	d	d	1					
11	1	d	d	0					
10	0	d	d	1]				

W	y 3	<i>y</i> ₂	<i>y</i> 1	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

w	y 3	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Next State and Output Expressions

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$
$$Y_2 = y_1\overline{y}_2 + \overline{y}_1y_2 + w\overline{y}_2\overline{y}_3$$
$$Y_3 = wy_3 + wy_1y_2$$

$z = y_3 + \overline{y}_1 y_2$

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Е	111	100	111	1
·	\uparrow			

B,C, D, E – when $y_3=1$

[Figure 6.89 from the textbook]

Present	Next	Output	
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
С	\mathbf{C}	D	1
D	В	Ε	0
Ε	В	Ε	1

Present	Next	Output	
state	w = 0	w = 1	z
А	В	D	0
В	\mathbf{C}	D	0
С	\mathbf{C}	D	1
D	В	Ε	0
Е	В	Ε	1

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Е	100	001	100	1

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Е	111	100	111	1
	\uparrow			

B,C, D, E – when $y_3=1$

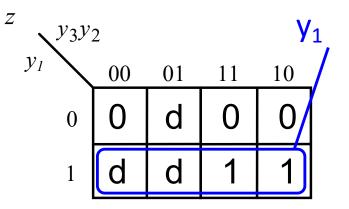
[Figure 6.87 from the textbook]

[Figure 6.89 from the textbook]

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

	Present	Next	state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	100	110	0	cut here
В	100	101	110	0	
С	101	101	110	1	
D	110	100	111	0	
Е	111	100	111	1	

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1


Truth Table for the Output z

	Ŧ	Present state		Next $w = 0$	state $w = 1$	0	utp	ut
	$y_3y_2y_1$		$Y_3Y_2Y_1$	$Y_3Y_2Y_1 = Y_3Y_2Y_1$		z		
Α		000		100	110		0	
		001		ddd	ddd		d	
		010		ddd	ddd		d	
		011		ddd	ddd		d	
В		100		101	110		0	
С		101		101	110		1	
D		110		100	111		0	
Е		111		100	111		1	

y 3	Y 2	<i>Y</i> 1	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Expression for the Output z

	Present	Next	Next state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	100	110	0	
	001	ddd	ddd	d	
	010	ddd	ddd	d	
	011	ddd	ddd	d.	
В	100	101	110	0	
С	101	101	110	1	
D	110	100	111	0	
Е	111	100	111	1	

y 3	<i>Y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Truth Table for Y₃

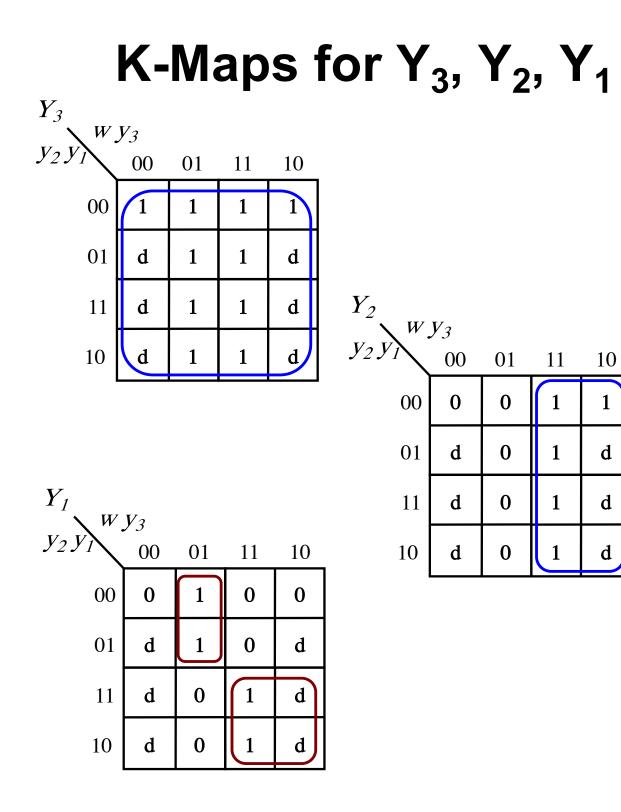
W	y 3	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1		
0	0	0	1	d		
0	0	1	0	d		
0	0	1	1	d		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	d		
1	0	1	0	d		
1	0	1	1	d		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	<mark>d</mark> dd	<mark>ddd</mark>	d
	011	ddd	ddd	d
В	100	101	110	0
C	101	101	110	1
D E	110	100	111	0
Ľ	111	100	111	1

Truth Table for Y₂

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	2
Α	000	100	110	0
	001	ddd	<mark>d</mark> dd	d
	010	<mark>dd</mark> d	ddd	d
	011	ddd	<u>ddd</u>	d.
В	100	101	110	0
C	101	101	110	1
D E	$\begin{array}{c} 110 \\ 111 \end{array}$	100 1 <u>0</u> 0	$111\\111$	$\begin{array}{c} 0 \\ 1 \end{array}$

w	y 3	<i>y</i> ₂	<i>y</i> ₁	Y ₃	<i>Y</i> ₂	Y ₁
0	0	0	0	1	0	
0	0	0	1	d	d	
0	0	1	0	d	d	
0	0	1	1	d	d	
0	1	0	0	1	0	
0	1	0	1	1	0	
0	1	1	0	1	0	
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	0	1	d	d	
1	0	1	0	d	d	
1	0	1	1	d	d	
1	1	0	0	1	1	
1	1	0	1	1	1	
1	1	1	0	1	1	
1	1	1	1	1	1	

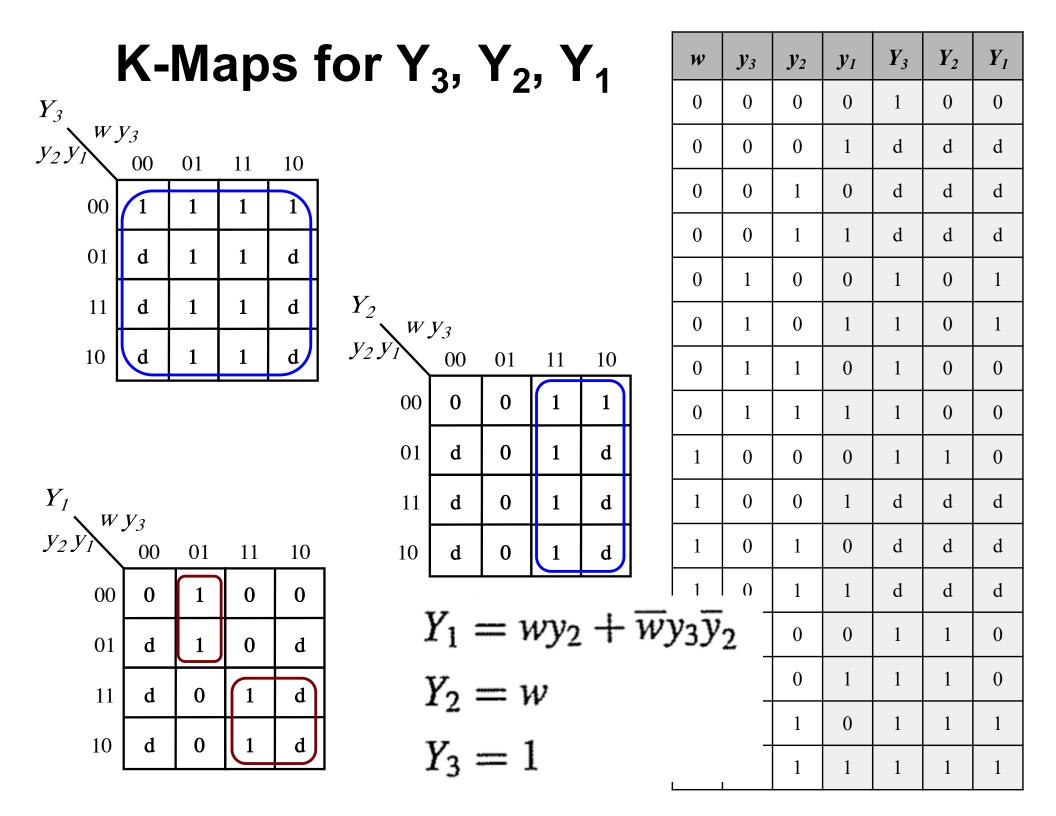

Truth Table for Y₁

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	ddd	d
	010	<mark>ddd</mark>	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
С	101	101	110	1
D	110	100	11 <mark>1</mark>	0
Е	111	100	11 <mark>1</mark>	1

W	y 3	<i>y</i> ₂	<i>y</i> 1	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

	K-	Ma	ap	s 1	for Y	3,	Υ,	, Y	1
Y_3	<i>Y3</i> 00		•			0		•	•
<i>y</i> ₂ <i>y</i> ₁	00	01	11	10					
00	1	1	1	1					
01	d	1	1	d					
11	d	1	1	d	Y_2 $Y_2 Y_1^W$	V_2			
10	d	1	1	d	<i>Y</i> ₂ <i>Y</i> ₁	<i>Y</i> 3 00	01	11	10
					00	0	0	1	1
					01	d	0	1	d
$\begin{array}{c} Y_1 \\ Y_2 y_1 \end{array}^W$	V_3				11	d	0	1	d
$y_2 y_1$	<i>Y</i> 3	01	11	10	10	d	0	1	d
00	0	1	0	0					
01	d	1	0	d					
11	d	0	1	d					
10	d	0	1	d]				

W	y 3	<i>y</i> ₂	<i>y</i> 1	<i>Y</i> ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1


W	y 3	<i>y</i> ₂	<i>y</i> 1	Y ₃	<i>Y</i> ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

1

d

d

d

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

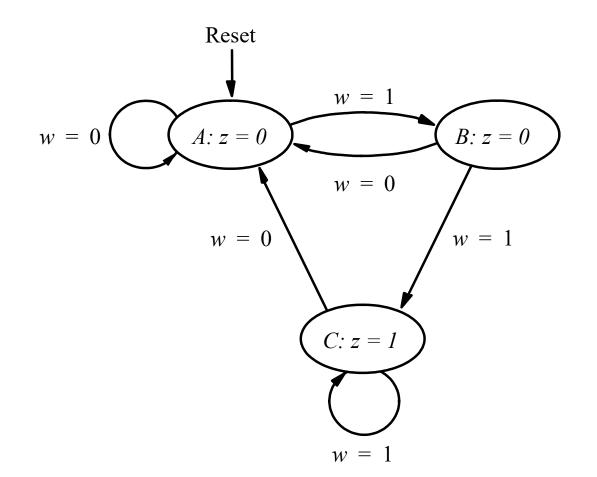
$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$
$$Y_2 = w$$
$$Y_3 = 1$$
$$z = y_1$$

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

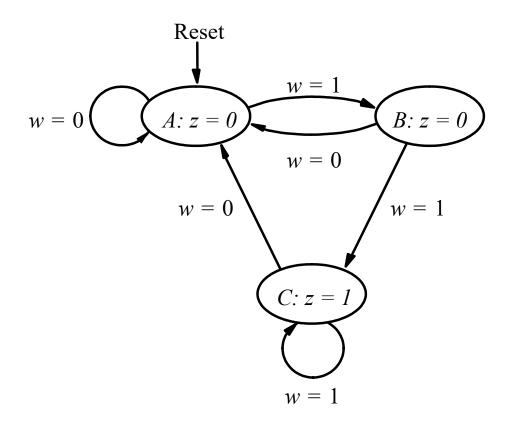
$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$
$$Y_2 = w$$
$$Y_3 = 1$$

 $z = y_1$

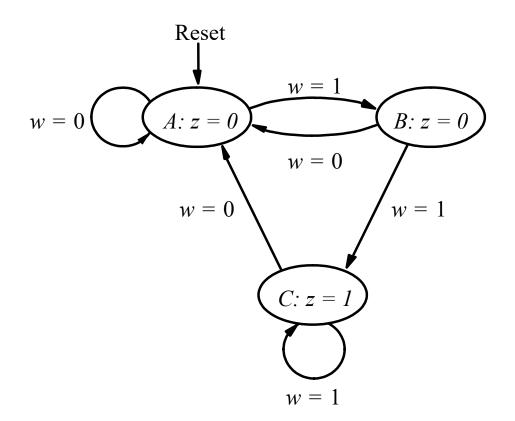
Example 6.13


Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- But do this with two different FSMs. The first one detects two consecutive 1's. The second one detects two consecutive 0's.
- If either condition (i.e., output of FSM) is true then the output z should be set to 1; otherwise to 0.


Example 6.13

(Construct the first FSM)


FSM to detect two consecutive 1's (this was the first example in Chapter 6)

[Figure 6.3 from the textbook]

Present	Next state	Output
state	w = 0 $w = 1$	Z
А		
В		
C		

Present	Next	Output	
state	w = 0	w = 1	z
A	А	В	0
В	А	С	0
С	А	С	1

[Figure 6.4 from the textbook]

A Better State Encoding

Present	Next state		Output
state	w = 0 w = 1		z
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states another way:

 $A \sim 00$ $B \sim 01$ $C \sim 11$

A Better State Encoding

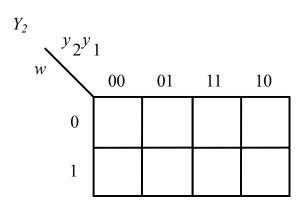
Present	Next	Output	
state	w = 0	w = 1	Z
А	А	В	0
В	А	С	0
C	А	С	1

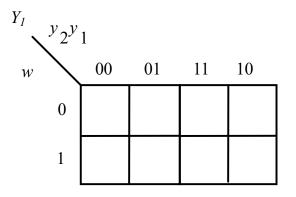
Present	Next state			
state	w = 0	w = 1	Output	
			Ζ	

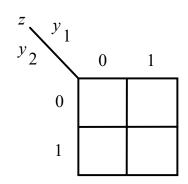
$$A \sim 00$$
$$B \sim 01$$
$$C \sim 11$$

A Better State Encoding

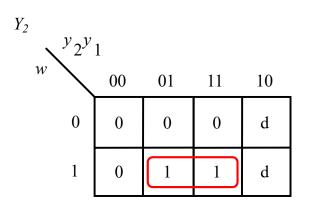
Present	Next	Output	
state	w = 0	w = 1	Z
A	А	В	0
B	А	С	0
C	А	С	1

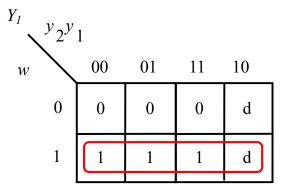

	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Z
A	00	00	01	0
В	01	00	11	0
С	11	00	11	1
	10	dd	dd	d

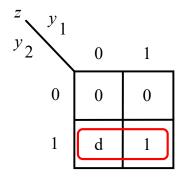

Let's Derive the Logic Expressions


	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Ζ
A	00	00	01	0
В	01	00	11	0
С	11	00	11	1
	10	dd	dd	d

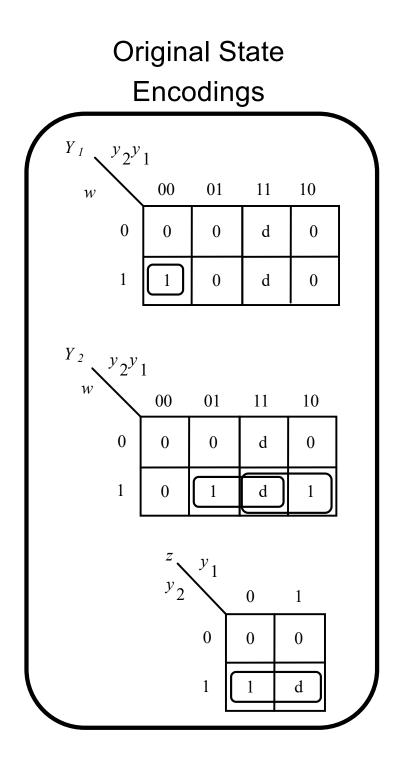
Let's Derive the Logic Expressions

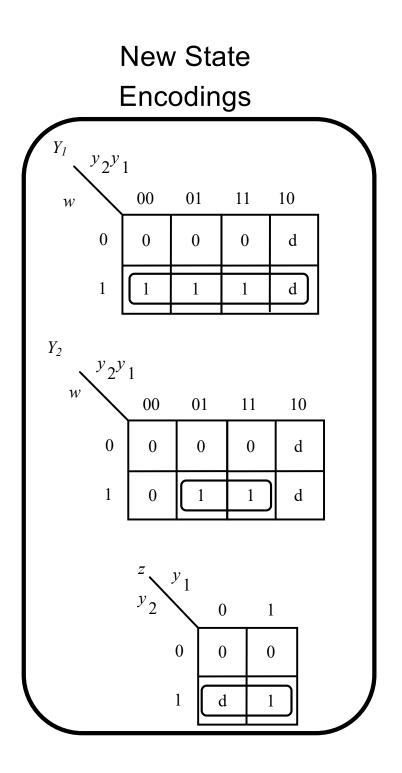

		Present	Next	state	
		state	w = 0	w = 1	Output
Warning: This table does not		<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Ζ
enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.	A B C	00 01 11 10	00 00 00 dd	01 11 11 <i>dd</i>	$\begin{array}{c} 0\\ 0\\ 1\\ d \end{array}$

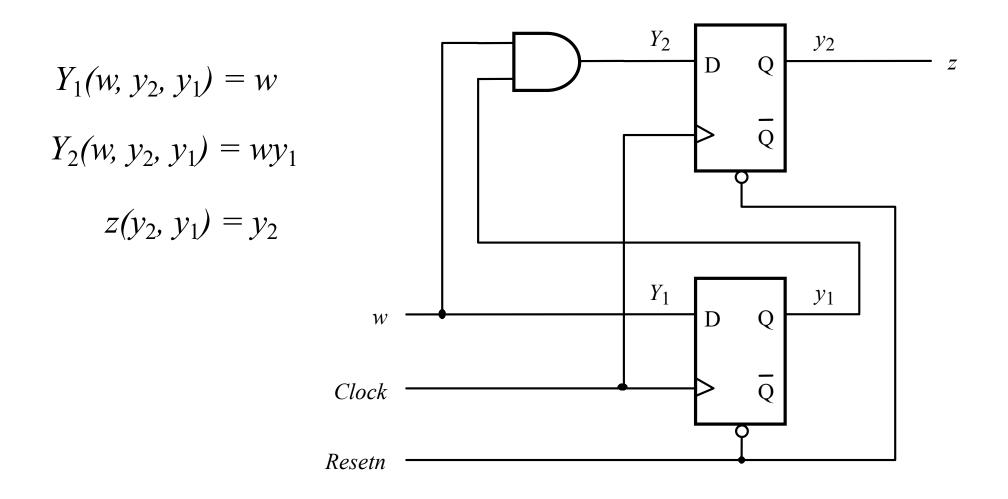




		Present	Next state		
		state	w = 0	w = 1	Output
Warning: This table does not		<i>Y</i> 2 <i>Y</i> 1	$Y_2 Y_1$	$Y_2 Y_1$	Z
enumerate $y_2 y_1$, in the	А	00	00	01	0
standard way, so be careful when filling	В	01	00	11	0
out the K-Map.	С	11	00	11	1
		10	dd	dd	d

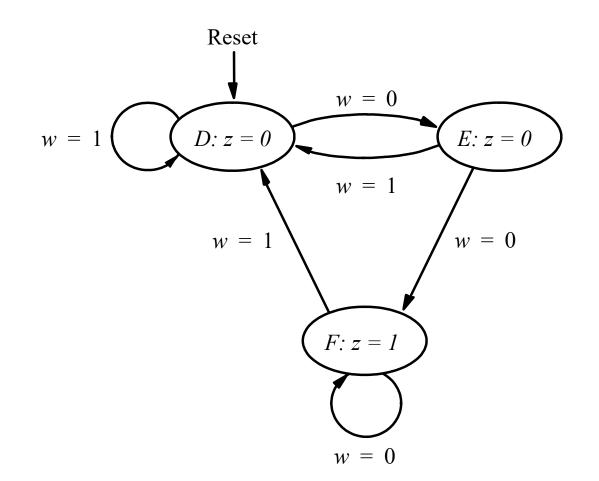



 $Y_1(w, y_2, y_1) = w$

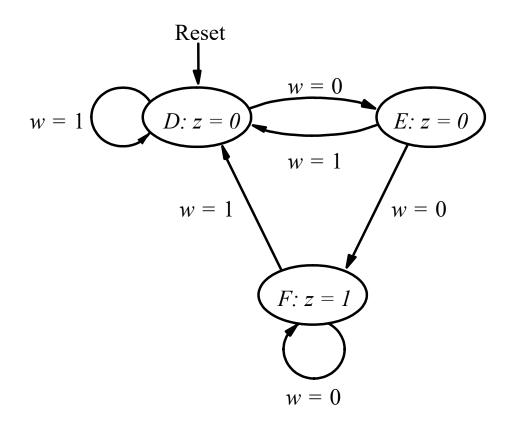


 $Y_2(w, y_2, y_1) = wy_1$

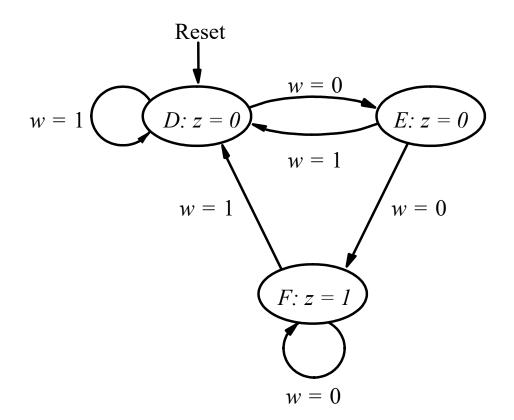
 $z(y_2, y_1) = y_2$



[Figure 6.17 from the textbook]


Example 6.13

(Construct the second FSM)


FSM to detect two consecutive 0's

This is similar to the previous one. Just invert the w's and relabel the states to D,E,F.

Present	Next state	Output
state	w = 0 $w = 1$	z
D		
Е		
F		

Present	Next	Output	
state	w = 0	w = 1	Z
D	E	D	0
Е	F	D	0
F	F	D	1

FSM that detects a sequence of two zeros

Present	Ne xt state		Output
state	w = 0	w = 1	Zzeros
D	E	D	0
\mathbf{E}	\mathbf{F}	D	0
\mathbf{F}	\mathbf{F}	D	1

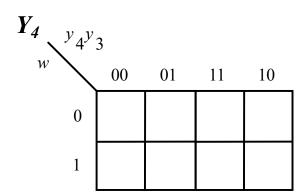
(a) State table

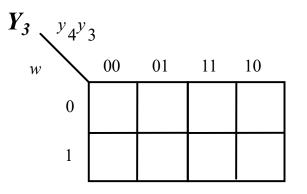
	Present	Next	state	
	state	w = 0 $w = 1$		Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

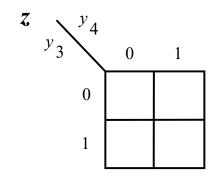
FSM that detects a sequence of two zeros

Present	Ne xt	Output	
state	w = 0	w = 1	Zzeros
D	E	D	0
\mathbf{E}	F ←	→D	0
\mathbf{F}	\mathbf{F}	D	1

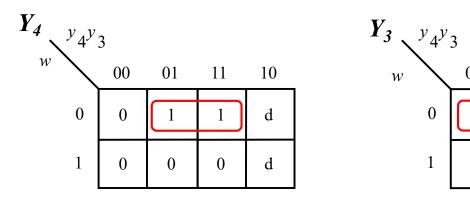
Only these two columns are swapped relative to the first FSM. And the states have different names now.

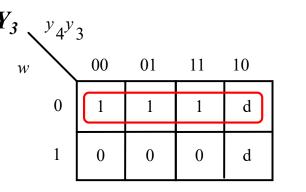

(a) State table

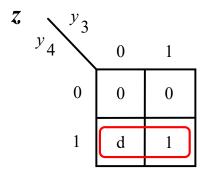

	Present	Next	state	
	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D E	00 01	01 11	00	0 0
F	11 10	$11 \stackrel{\leftarrow}{dd}$	$\rightarrow 00$ dd	$egin{array}{c} 1 \ d \end{array}$

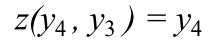

Only these two columns are swapped relative to the first FSM.

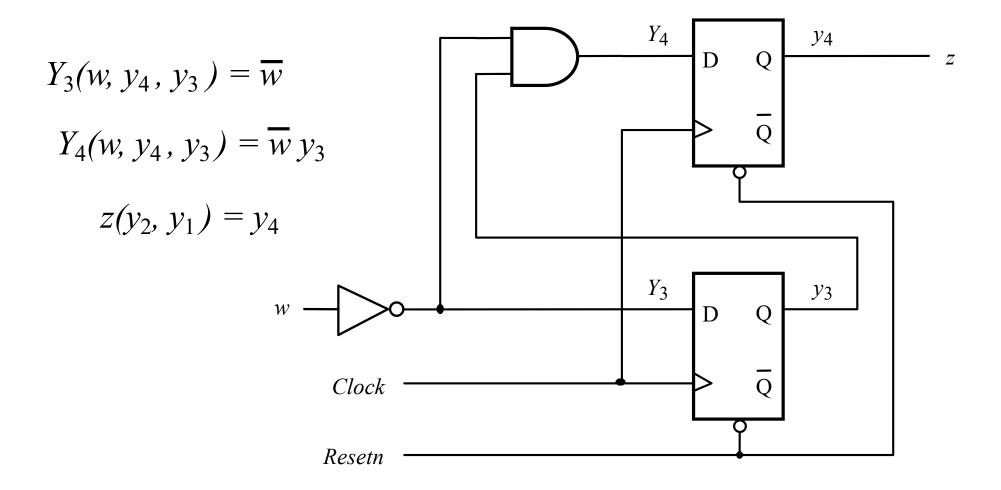
	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	<i>Y</i> ₄ <i>Y</i> ₃	$Y_4 Y_3$	Ζ
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d


	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 4 <i>Y</i> 3	$Y_4 Y_3$	$Y_4 Y_3$	Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

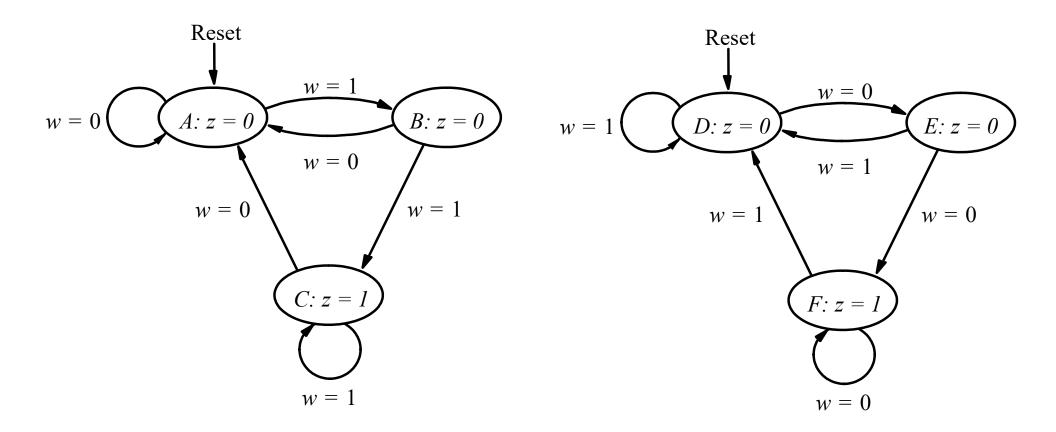





	Present	Next		
	state	w = 0 $w = 1$		Output
	<i>Y</i> 4 <i>Y</i> 3	$Y_4 Y_3$	$Y_4 Y_3$	Ζ
D	00	01	00	0
Е	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

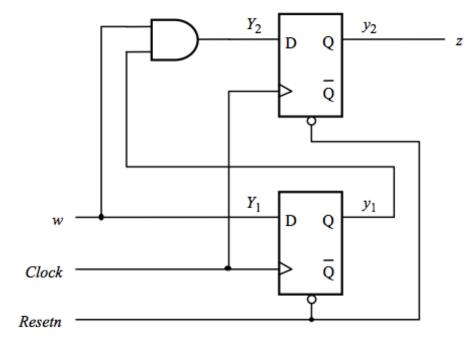


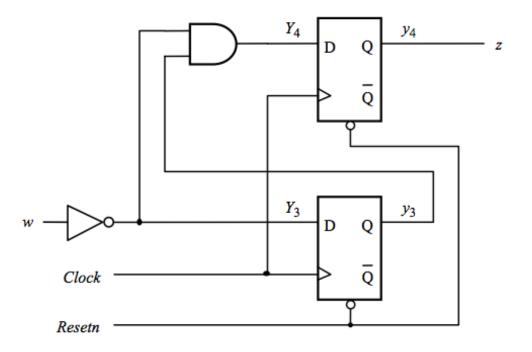
 $Y_4(w, v_4, v_3) = \overline{w} v_3$ $Y_3(w, v_4, v_3) = \overline{w} z(v_4, v_3) = v_4$



Example 6.13

(Combine the two FSMs)

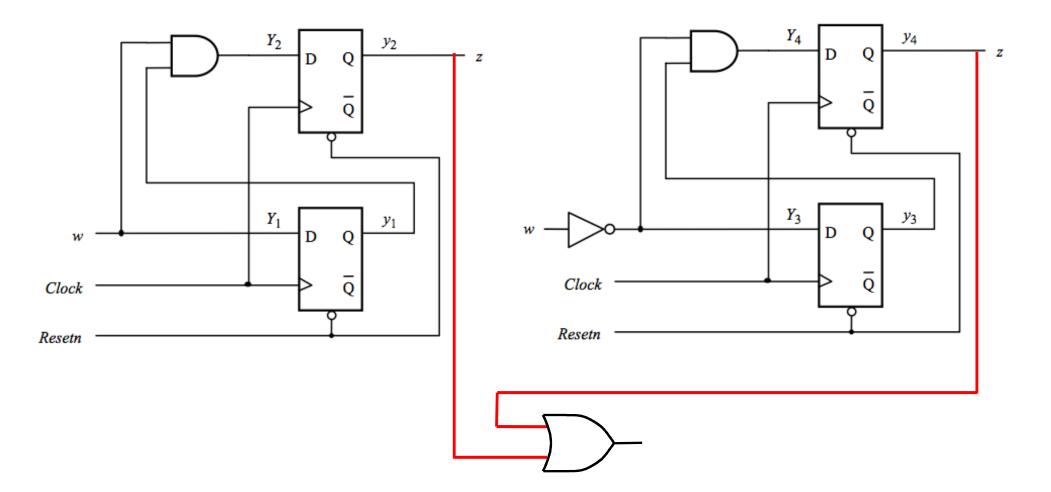

The Two FSMs



Detect two consecutive 1's

Detect two consecutive 0's

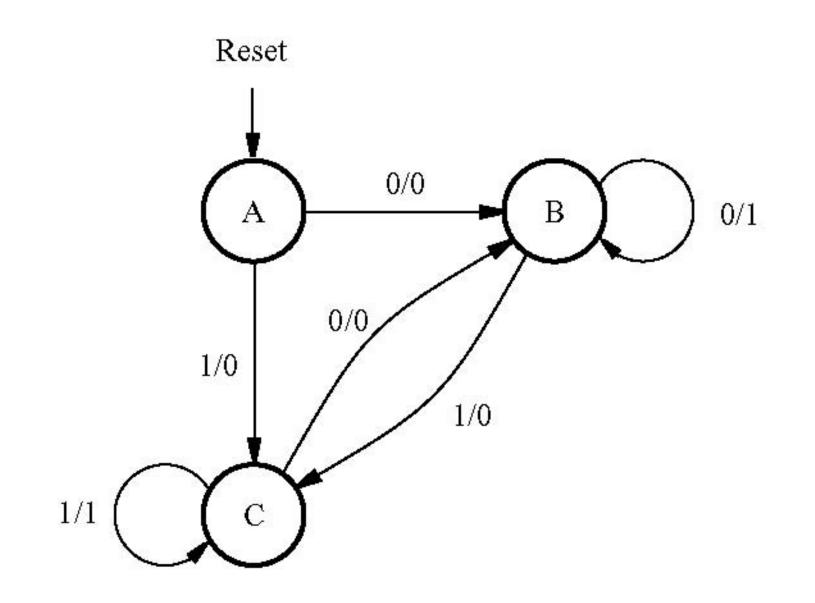
The Two Circuit Diagrams



Detect two consecutive 1's

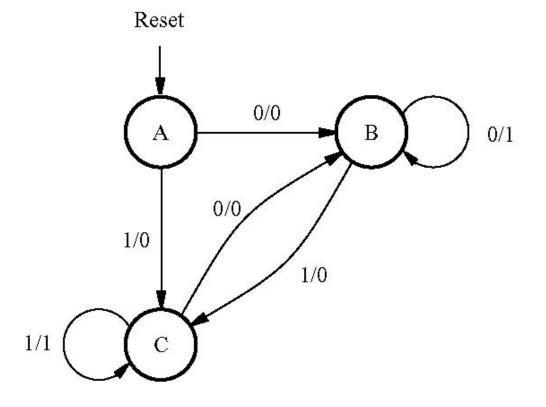
Detect two consecutive 0's

The Combined Circuit Diagram


Detect two consecutive 1's or two consecutive 0's

Example 6.14

Goal


- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true then the output z should be set to 1; otherwise to 0.
- Implement this as a Mealy-type machine

State Diagram

[Figure 6.91 from the textbook]

Building the State Table

Present	Next state		Outp	put z
state	w = 0	w = 1	w = 0	w = 1
А	В	С	0	0
В	В	\mathbf{C}	1	0
С	В	\mathbf{C}	0	1

[Figure 6.92 from the textbook]

State Table

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
А	В	С	0	0
В	В	С	1	0
С	В	\mathbf{C}	0	1

Building the State-Assigned Table

Present	Next	state	Output z	
state	w = 0	w = 1	w = 0	w = 1
А	В	\mathbf{C}	0	0
В	В	\mathbf{C}	1	0
С	В	\mathbf{C}	0	1

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

[Figure 6.93 from the textbook]

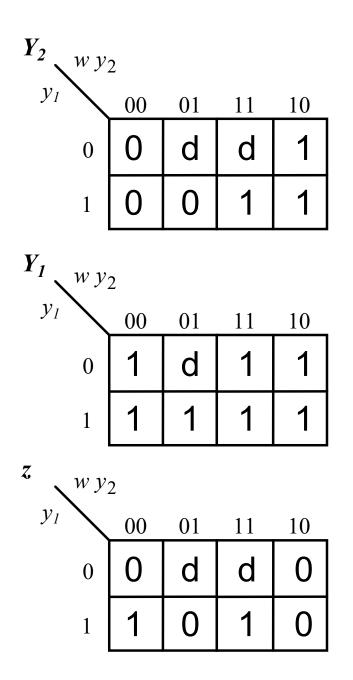
Present	Next state		Output	
state	w = 0	w = 1	w = 0	w = 1
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
00	01	11	0	0
01	01	11	1	0
11	01	11	0	1

A B C

[Figure 6.93 from the textbook]

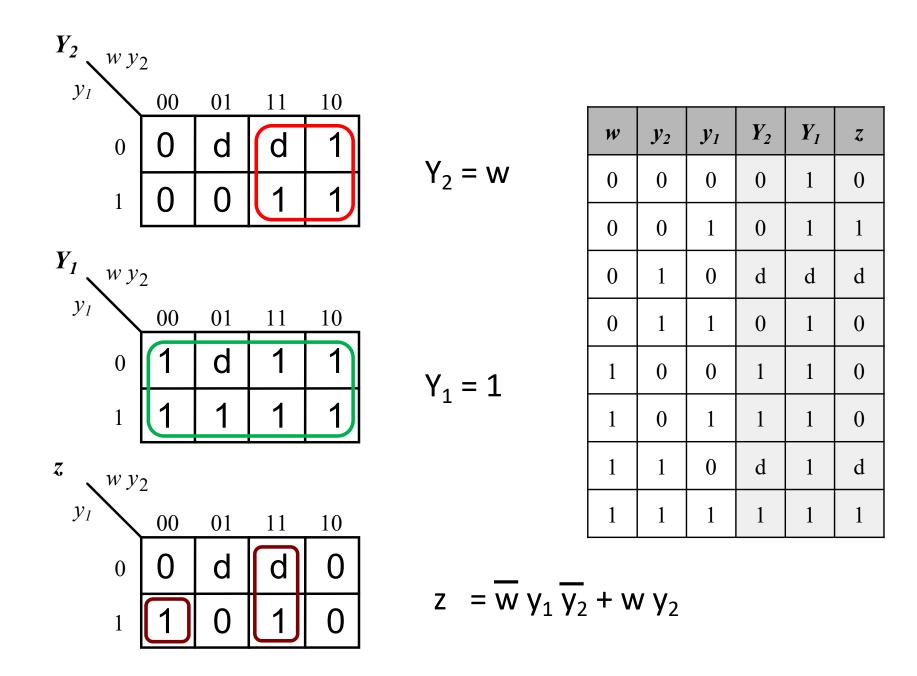
	Present	Next state		Output		
	state	w = 0	w = 1	w = 0	w = 1	
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z	
Α	00	01	11	0	0	
В	01	01	11	1	0 ^{cut}	here
С	11	01	11	0	1	

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1


	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
·	10	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

Truth Table for Y₂, Y₁, and z

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_2 y_1$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
	10	d d	d d	d	d
С	11	01	11	0	1


w	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₂	Y ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

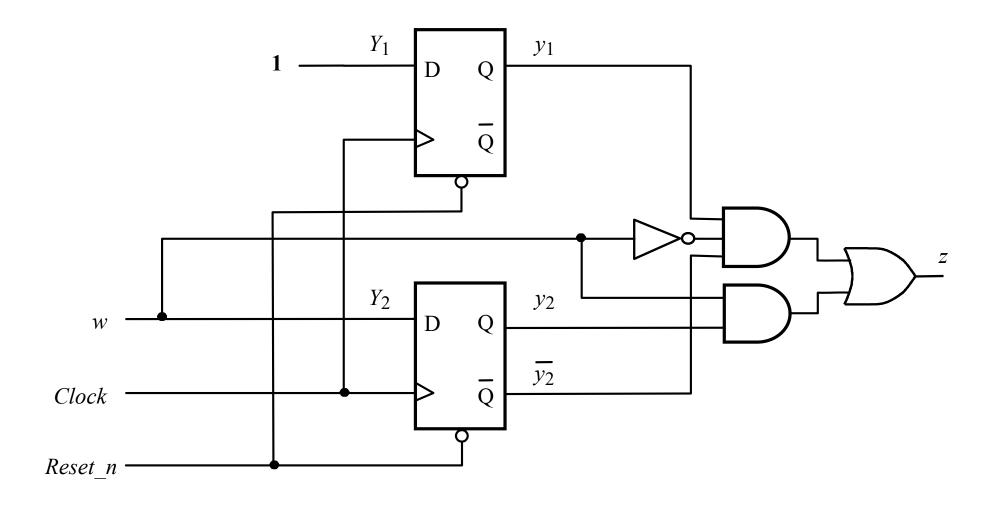
w	<i>y</i> ₂	<i>y</i> ₁	<i>Y</i> ₂	Y ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

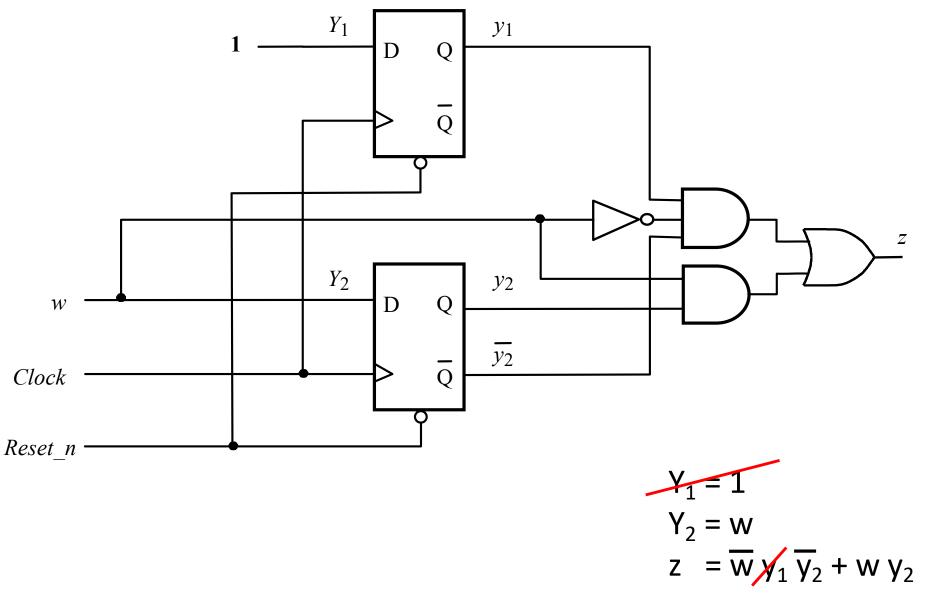
$$Y_1 = 1$$

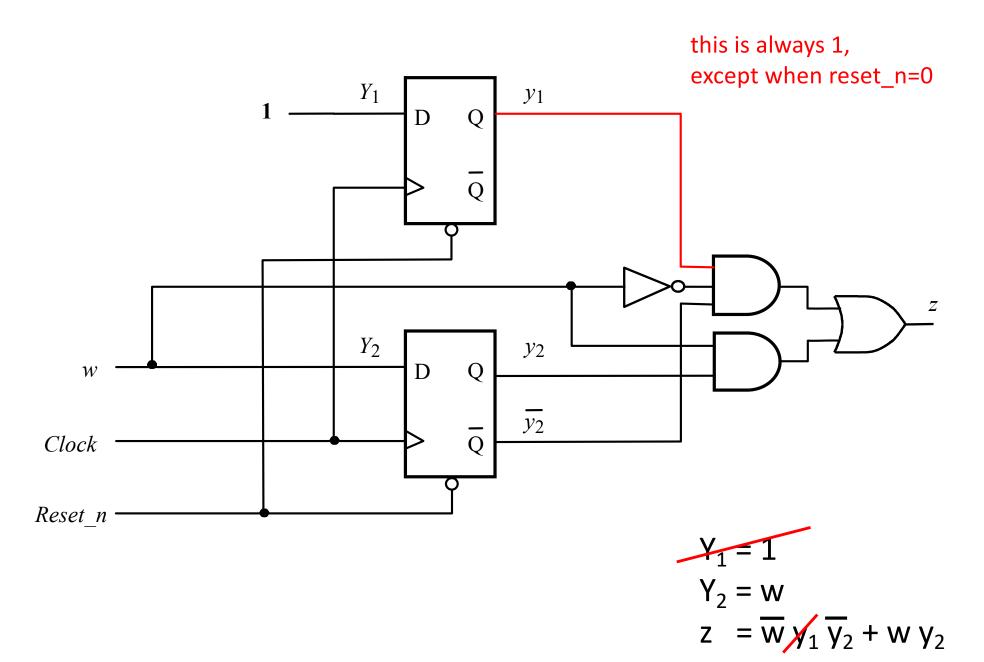
$$Y_2 = w$$

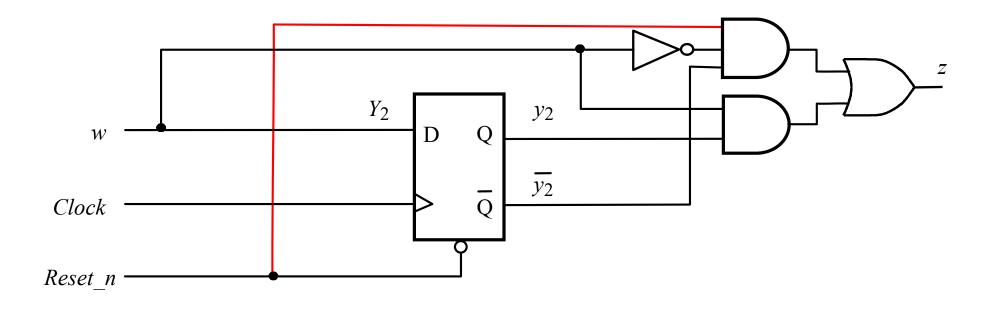

$$z = \overline{w} y_1 \overline{y_2} + w y_2$$


	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

$$Y_{1} = 1$$


$$Y_{2} = w$$


$$z = \overline{w} y_{1} \overline{y}_{2} + w y_{2}$$



 $z = \overline{w} y_1 \overline{y}_2 + w y_2$

The Simplified Circuit Diagram

$$Y_2 = w$$

z = $\overline{w} \overline{y}_2 + w y_2$

Example 6.15

Goal

Implement this state-assigned Table using JK flip-flops

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

	Present	Flip-flop inputs									
	state	-	w =	: 0				Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
	000	100	1d	0d	0d	110	1d	1d	0d	0	
	100	101	d0	0d	1d	110	d0	1d	0d	0	
	101	101	d0	0d	d0	110	d0	1d	d1	1	
	110	100	d0	d1	0d	111	d0	d0	1d	0	
r	111	100	d0	d1	d1	111	d0	d0	d0	1	

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

[Figure 6.94 from the textbook]

Present Flip-flop inputs										
	state		w =	: 0			w =	- 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
	000	100	1d	0d	0d	110	1d	1d	0d	0
	100	101	d0	0d	1d	110	d0	1d	0d	0
	101	101	d0	0d	d0	110	d0	1d	d1	1
	110	100	d0	d1	0d	111	d0	d0	1d	0
r	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

	Present	с.			Flip-floj	p inputs				~ ~ ~
	state		w =	- 0			w =	1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ \hline 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

	Present			i I	Flip-flo	o inputs				2-2 C C
	state	:	w =	- 0				Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ \hline 1 \rightarrow 1 & d 0 \end{array}$$

Present				Flip-floj	p inputs				
state		w =	: 0				Output		
$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
000	100	1d	0d	0d	110	1d	1d	0d	0
100	101	d0	0d	1d	110	d0	1d	0d	0
101	101	d0	0d	d0	110	d0	1d	d1	1
110	100	d0	d1	0d	111	d0	d0	1d	0
111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

	Present				Flip-floj	p inputs				
	state		w =	: 0				Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
2.9445	000	100	1d	0d	0d	110	1d	1d	0d	0
100 CO	100	101	d0	0d	1d	110	d0	1d	0d	0
0.000	101	101	d0	0d	d0	110	d0	1d	d1	1
ŝ	110	100	d0	d1	0d	111	d0	d0	1d	0
	111	100	d0	d1	d1	111	d0	d0	d0	1

$$q(t) \rightarrow q(t+1)$$
J K $0 \rightarrow 0$ 0 d $0 \rightarrow 1$ 1 d $1 \rightarrow 0$ d 1 $1 \rightarrow 1$ d 0

	Present				Flip-floj	p inputs				
	state		w =	: 0			w =	= 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
2	000	100	1d	0d	0d	110	1d	1d	0d	0
	100	101	d0	0d	1d	110	d0	1d	0d	0
	101	101	d0	0d	d0	110	d0	1d	d1	1
	110	100	d0	d1	0d	111	d0	d0	1d	0
	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c} Q(t) \rightarrow Q(t+1) & J K \\ \hline 0 \rightarrow 0 & 0 d \\ 0 \rightarrow 1 & 1 d \\ 1 \rightarrow 0 & d 1 \\ 1 \rightarrow 1 & d 0 \end{array}$$

	Present			i I	Flip-floj	o inputs				
	state		w =	- 0			w =	1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	1 <mark>00</mark>	101	d0	0d	1d	110	d0	1d	0d	0
С	101	$1\overline{01}$	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$Q(t) \rightarrow Q(t+1)$$
 J K

 $0 \rightarrow 0$
 $0 d$
 $0 \rightarrow 1$
 $1 d$
 $1 \rightarrow 0$
 $d 1$
 $1 \rightarrow 1$
 $d 0$

And so on...

The Expression for z

	Present			ŝ	Flip-floj	o inputs				
	state		w =	: 0			w =	- 1		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
20.00	000	100	1d	0d	0d	110	1d	1d	0d	0
	100	101	d0	0d	1d	110	d0	1d	0d	0
	101	101	d0	0d	d0	110	d0	1d	d1	1
	11 <mark>0</mark>	100	d0	d1	0d	111	d0	d0	1d	0
	11 <mark>1</mark>	100	d0	d1	d1	111	d0	d0	d0	1

A B C D E

z is equal to y₁

The Expression for J₃

Present				Flip-flo	p inputs				
state		w =	: 0			w =	= 1		Output
$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
 000	100	1d	0d	0d	110	1d	1d	0d	0
100	101	d0	0d	1d	110	d0	1d	0d	0
101	101	d0	0d	d0	110	d0	1d	d1	1
110	100	d0	d1	0d	111	d0	d0	1d	0
111	100	d0	d1	d1	111	d0	d0	d0	1

A B C D E

J_3 is equal to 1

The Expression for K₃

	Present		Flip-flop inputs									
	state	1	w =	: 0			w =	- 1		Output		
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z		
24755	000	100	1d	0d	0d	110	1d	1d	0d	0		
	100	101	d0	0d	1d	110	d0	1d	0d	0		
	101	101	d0	0d	d0	110	d0	1d	d1	1		
	110	100	d0	d1	0d	111	d0	d0	1d	0		
Č.	111	100	dO	d1	d1	111	d0	d0	d0	1		

A B C D E

K_3 is equal to 0

The Expression for J₂

	Present	Flip-flop inputs										
	state		w =	: 0			Output					
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z		
1.11	000	100	1d	0 d	0d	110	1d	1d	0d	0		
	100	101	d0	0 d	1d	110	d0	1d	0d	0		
	101	101	d0	0 d	d0	110	d0	1d	d1	1		
	110	100	d0	d1	0d	111	d0	d0	1d	0		
ſ	111	100	d0	d1	d1	111	d0	dO	d0	1		

A B C D E

J_2 is equal to w

The Expression for K₂

	$\begin{array}{c} \text{Present} \\ \text{state} \\ y_3 y_2 y_1 \end{array}$	Flip-flop inputs									
			w =	: 0			Output				
		$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
1.11	000	100	1d	0d	0d	110	1d	1d	0d	0	
	100	101	d0	0d	1d	110	d0	1d	0d	0	
	101	101	d0	0d	d0	110	d0	1d	d1	1	
	110	100	d0	a1	0d	111	d0	d0	1d	0	
Č.	111	100	d0	d1	d1	111	d0	d <mark>0</mark>	d0	1	

A B C D E

K_2 is equal to \overline{W}

The Expression for J_1

	Present	Flip-flop inputs									
	$\begin{array}{r} \text{Present} \\ \text{state} \\ y_3 y_2 y_1 \\ 000 \\ 100 \end{array}$		w =	: 0			Output				
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
24.04	000	100	1d	0d	0d	110	1d	1d	0d	0	
	10 <mark>0</mark>	101	d0	0d	1d	110	d0	1d	0d	0	
o Maria	10 <mark>1</mark>	101	d0	0d	d0	110	d0	1d	d1	1	
	110	100	d0	d1	0 d	111	d0	d0	1d	0	
	$1\frac{1}{1}$ 1	100	d0	d1	d1	111	d0	d0	d0	1	

A B C D E

 J_1 is equal to $w y_2 + \overline{w} y_3 \overline{y_2}$

The Expression for K₁

	Present Flip-flop inputs									
	state		w =	- 0			Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
С	101	101	d0	0d	d 0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	$1\overline{d}$	0
Ε	1 <mark>11</mark>	100	d0	d1	d_1	111	d0	d0	d0	1
						•			Ы	

001

a

 K_1 is equal to $\overline{w} y_2 + w \overline{y_2} y_1$

All Logic Expressions

 $J_1 = wy_2 + \overline{w}y_3\overline{y}_2$ $K_1 = \overline{w}y_2 + wy_1\overline{y}_2$ $J_2 = w$ $K_2 = \overline{w}$ $J_3 = 1$ $K_{3} = 0$ $z = y_1$

Questions?

THE END