P1 ($\mathbf{5} \mathbf{x} \mathbf{2 p t s}=10$ points): Answer the following true/false questions.
a. In Verilog, the symbol for OR is the plus sign ("+")
b. $x+y=\overline{x \cdot y}$
c. In Verilog, the symbol for XOR is the caret ("^")
d. A NAND gate can implement a NOT gate
e. $\overline{(x \cdot y)+(\bar{x} \cdot \bar{y})}=(\bar{x}+\bar{y}) \cdot(x+y)$

True/False
True/False
True/False
True/False

P2 (15 points): Given the expression $F(a, b, c, d)=\Pi M(0,2,4,9,11,12)$, perform the following:
a. Write the expression for F as a shorthand SOP expression.
b. Write the expression for F as a simplified POS expression.
c. Show how the expression for F can be implemented as a digital circuit using exactly three NOT gates, three OR gates, and one AND gate.

P3 (15 points): Show how to implement the following:
a. Implement a 4 -input AND gate using three 2 -input AND gates.
b. Implement a 4 -input NAND gate using five 2 -input NAND gates.
c. Implement a 2 -input AND gate using any number of OR and NOT gates. Hint: remember how DeMorgan's Theorem can be used to change between AND and OR operations.

P4 (15 points): Convert the following circuit into a circuit that only uses NOR gates and NOT gates. Your circuit should use no more than 8 NOR gates.

P5 ($\mathbf{1 5}$ points $=\mathbf{3 p}+\mathbf{3 p + 3 p + 4 p}$): A Full Adder is a circuit that adds three bits (X, Y, and Z) together and returns two bits (C and S) to represent the total as a 2-bit binary number, where the carry bit C is the most significant bit (MSB) and the sum bit S is the least significant bit (LSB). For example, let $\mathrm{X}=1, \mathrm{Y}=0$, and $\mathrm{Z}=1$. Here, the total should be $2_{10}=10_{2}$, and the outputs are $\mathrm{C}=1$ and $\mathrm{S}=0$.
a. Derive the truth tables for C and S . (3p)
b. Write the Boolean functions for C and S in shorthand notation using minterms. (3p)
c. Repeat part b) but use maxterms instead. (3p)
d. Obtain the simplest SOP expressions for the functions C and S and draw a circuit that implements the Full Adder. (4p)

P6 (16 points): Given the expression $G(A, B, C)=\sum m(2,5,6,7)$, perform the following:
a. Write the expression for G as a simplified SOP expression.
b. Write the expression for G as a simplified POS expression.
c. Implement G using exactly four NOR gates and no other gates.
d. Did you use the SOP expression or the POS expression to implement the circuit? Why?

P7 (14 points): Consider the expression $H(W, X, Y, Z)=\sum m(0,2,8,10,11)$
a. Write H as a simplified SOP expression
b. Implement H using Verilog

```
module p7 (W,X,Y,Z,H);
    input W,X,Y,Z;
    output H;
    //write your code here
```

endmodule

