Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 5, 2020

P1 (8 points): For the grid below, shade the boxes for each number in the column that can be represented with only 3 -bits under the format for that particular row.

	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
Unsigned																	
Sign \& Magnitude																	
1's Complement																	
2's Complement																	

P2 (12 points): Perform the following operations on the numbers and indicate if overflow occurs for each operation. All numbers are 6 bits wide (stored in 2's complement). Show your work and all carry bits.

| 011001 |
| ---: | ---: | ---: |
| +000101 |\quad| 110011 |
| ---: |
| $-\quad 101100$ |
| 101101 |
| +110110 |

P3 (16 points): Let A be a three-bit unsigned number. Use a seven-bit adder (and NOT gates, as necessary) to design a circuit that calculates the following operations. Note that the output may be assumed as unsigned, unless it is possible for the operation to produce a negative answer, in which case, the output must be correct in 2's complement:
$\mathrm{W}=5 \mathrm{~A}+4$
$\mathrm{X}=\mathrm{A}-14$
$\mathrm{Y}=34 \mathrm{~A}+18$
$Z=38-4 A$

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 5, 2020

$\mathbf{P 4}$ (18 points): In the circuits below, find the algebraic expression for $\mathbf{B}(\mathbf{X})$ (B in terms of X) and $\mathbf{X}(\mathbf{A})$ (the expression for X in terms of A). Overflow is ignored, but all results that would produce an overflow are not be accepted as an allowed input.
a) Here, A is a 4-bit unsigned integer, X is a 7-bit unsigned integer, and B is a 7 -bit number in 2's complement.

b) X and B are 7-bit 2's complement integers, but A is a 6-bit unsigned integer.

BBBBBBB
c) A is a 3-bit unsigned integer, X is an unsigned 7-bit integer, and B is an 8-bit unsigned number. Hint: consider the role of B_{7} when the value of X is large.

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 5, 2020

P5 (16 points): Convert the following numbers to IEEE 754 SinglePrecision Floating Point format. Write your answer in hexadecimal, and indicate if an answer has a repeating mantissa:
a) -49
b) 250
c) $25 / 128$
d) 3.3

P6 (8 points): Convert the following numbers from IEEE 754 SinglePrecision Floating Point format to decimal. Note that each number is given in hexadecimal. You may leave the result as a fraction.
a) $\mathrm{C} 4000000_{16}$
b) $421 \mathrm{COOOO}_{16}$
c) $\mathrm{BF} 700000_{16}$
d) $3 \mathrm{~F} 840000_{16}$

P7) (8 Points): Answer the following questions about MUXes and decoders. a) How many 1-bit 2 -to-1 MUXes are necessary to create an 8-bit 2-to1MUX?
b) How many 1-bit 2-to-1 MUXes are necessary to create a 1 -bit 8 -to-1 MUX?
c) How many 2-to-4 decoders are necessary to create a 4-to-16 decoder?
d) How many 3-to- 8 decoders are necessary to create a 6 -to- 64 decoder?

P8 (14 points): Implement the function $G(w, x, y, z)=\sum m(5,7,8,10,13,14,15)$ as follows:
a) Use a K-map to show that G can be written as $G=x z+w \bar{x} \bar{z}+w y \bar{z}$
b) Implement G using only a minimal number (3) of 2-1 MUXes and no other gates (NOT gates are not allowed, either). Hint: Use Shannon's Expansion Theorem a few times.

