

P1 (30 points): Floating Point Register File.

Consider the circuit below. This circuits iterates through a list of four floating point numbers stored in a register file and finds the sign, exponent, and mantissa portion of each number.

- - a. 23
 - b. -127
 - c. -53
 - d. 1.6
- B) (10 points) Use any number of 32-bit registers, 2-to-4 decoders, 32-bit 4-to-1 multiplexers, and any necessary gates to construct a register file that can store four floating point numbers. Use the following design for your 32-bit registers.

- C) (10 points) Implement a 2-bit counter to iterate through all four values stored in the register file.
 - a. Use TFF to design the 2-bit counter
 - b. Use DFF to implement the 2-bit counter

Cpr E 281 HW09 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY State Assignment, Counters, and Register Files Due Date: Oct. 26, 2020

P2 (20 points): We want to design a circuit with input W and an output Z, where Z will equal 1 if, for the last three clock cycles, W has been 1. A: Draw a state diagram for a Moore Finite State Machine (FSM) that implements this circuit in four states, specified as follows:

B: Complete a state table for the above state diagram with the state assignments as shown below for state variables D_1 and D_0 .

	W=0	W=1	Ζ
S-0:00			
S-I:01			
S-II:10			
S-III:11			

C: Use K-maps to show that the output and next-state variables can be expressed as:

$$D_1^{new} = (w)(D_1 + D_0)$$
$$D_0^{new} = (w)(D_1 + \overline{D}_0)$$
$$z = D_1 D_0$$

D: Let's consider if the states were encoded as:

Use K-maps to show that the output and next-state variables with this new encoding can be expressed as:

$$D_1^{new} = (w)(D_1 + D_0)$$
$$D_0^{new} = w\overline{D}_1$$
$$z = D_1\overline{D}_0$$

E: Draw the circuit for this FSM (developed in part D) using only DFFs, AND gates, and one OR gate (Do not use any NOT gates).

Cpr E 281 HW09State Assignment, Counters, andELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITYState Assignment, Counters, and
Register Files
Due Date: Oct. 26, 2020

P3 (15 points): Design a circuit that with one bit input N and 3-bit output P that operates as follows:

When N=0, the new value of P will be $P_{new} = 2 * P_{old}$. When N=1, the new value of P will be $P_{new} = 2 * P_{old} + 1$. Since P is only three bits, each operation must be modulo 8 (i.e., if P=5, then 2*P=10 is too large to fit into the 3-bit value for P, so we subtract 8 from 10 to get 2, which should be the new value for P).

A: Draw the state table for the Moore FSM that implements this circuit. Your circuit should have a state for each possible output.

B: Show the next state Boolean expressions for each state variable.

C: The circuit that you end up with for this circuit is equivalent in functionality to a circuit that we have already discussed. What circuit is this?

P4 (15 points): Draw the state diagram for a Moore FSM that has a 1-bit input P and a 1-bit output Q. P will be either 1 or 0 on any particular clock cycle. Q=0 if P has been 1 for an even number of clock cycles; Q=1 if P has been 1 for an odd number of clock cycles.

A: Draw the state diagram for this Moore FSM.

B: Draw the state table for this FSM.

C: Draw a state assigned table for this FSM. The state should be the same as the output: Q.

D: Draw the truth table for this FSM's next-state variable.

E: Derive the expression for the next state variable and the output Q.

F: Draw the circuit for this FSM. If done properly, the circuit you create will implement a component that you have seen before. What component have you implemented?

P5 (20 points): Look at the state diagram below. The input variables are X and Y. The state variables are S_1 and S_0 . The state encodings are as follows: A=00, B=01, C=10, and D=11. The output variables are Z_2 , Z_1 , and Z_0 .

I: Fill in the timing diagram below given the state diagram for a circuit that implements this state diagram using Positive-Edge-Triggered DFFs.

II: Fill in the state table with state assignments

	X=0, Y=0	X=0, Y=1	X=1, Y=0	X=1, Y=1	$Z_2Z_1Z_0$
А					
В					
С					
D					

III: Draw the truth table and show that the next-state expressions can be expressed as follows:

$$S_0^{new} = \bar{S}_1 \bar{S}_0(Y) + \bar{S}_1 S_0(X\bar{Y}) + S_1 \bar{S}_0(X) + S_1 S_0(\bar{X}\bar{Y})$$

$$S_1^{new} = \bar{S}_1 \bar{S}_0(0) + \bar{S}_1 S_0(\bar{X} + Y) + S_1 \bar{S}_0(Y) + S_1 S_0(XY + \bar{X}\bar{Y})$$

 $S_1 = S_1 S_0(0) + S_1 S_0(X + T) + S_1 S_0(T) + S_1 S_0(X + T)$ IV: Derive expressions for the output variables Z_2 , Z_1 , and Z_0 in terms of S_1 and S_0 .