Designing of Sequential Circuits
 Assigned: Week 12
 Due Date: Nov. 9, 2020

P1 (10 points): Derive a minimal state table for a single-input and singleoutput Moore-type FSM that produces an output of 1 if in the input sequence it detects either 110 or 101 patterns. Repeat this problem for a Mealy-type FSM.

P2 (10 points): Let us make a Moore FSM that determines if a number is divisible by three.
a) Draw the state diagram for a Moore FSM that receives an input W and produces an output $Z=1$ only if the accumulated value V is a multiple of 3 . When W is input, the new value is as follows: $V_{\text {new }}=$ $2 V+W$. The FSM should have only three states, where each state corresponds to the value of $V \bmod 3$.
b) Use your state diagram to determine if the 36-bit number 101100101110110110010101100101110110 is a multiple of 3.

P3 (20 points):

A counter has a special counting sequence: $0,5,7,1,0,5,7,1$, and so on. Design this counter with minimal number of states.
a) Draw a state diagram for the counter.
b) Construct a state-assigned table including the next state and output.
c) Draw the circuit diagram for the counter using D flip-flops.
d) Repeat (c) using T flip-flops.
e) Repeat (c) using JK flip-flops.

P4 (10 points): Reduce the state diagram below to use only five states.

Designing of Sequential Circuits
 Assigned: Week 12
 Due Date: Nov. 9, 2020

P5 (25 points): You have a modulo-256 down counter (operand counter) with 8-bit output and one-bit input N (the operand counter counts down for each clock cycle where $\mathrm{N}=1$). Assume that this operand counter is initially holding an unknown value V . You also have a second modulo-256 up counter (result counter) with one-bit input R. The result counter counts up for each clock cycle where $\mathrm{R}=1$. This is used to store an 8 -bit mathematical result W . Design the following:
a) Design a circuit that outputs $Z=1$ if the operand counter is nonzero.
b) The following FSM state diagram receives input Z and outputs N (which decrements the down counter) and R (which increments the up counter). When the down counter reaches zero, algebraically describe the value of the up-counter W in terms of the initial value of the down counter V. Also, denote if the answer will be rounded down or rounded up to the nearest integer.

c) Design a FSM state diagram that fills the result counter with the value $W=\left[\left.\frac{V}{5} \right\rvert\,\right.$ (the result of division rounded down to the nearest integer) using the one-bit input Z, output R (R is the input which enables the up counter), and output N (N is the input which enables the down counter). You only need to draw the state diagram; the destination for each FSM connection should be specified as above. When the result counter contains the correct value, the result counter should remain unchanged for any future clock cycles.
d) Repeat part II but produce the result $W=\left\lceil\frac{3 V}{5}\right\rceil$ (here, the quotient is rounded up to the nearest integer).
e) Repeat part II but produce the result $W=\left\lceil\frac{5 V}{3}\right\rceil$ (round up).

Designing of Sequential Circuits
 Assigned: Week 12
 Due Date: Nov. 9, 2020

P6 (15 points): A FSM has two D flip-flops, an input w, and an output z. The circuit diagram is shown below.

a) Find the logic expressions of Y_{1}, Y_{0}, and the output z.
b) Show the state-assigned table of the FSM.
c) Draw the state diagram of the FSM.

P7 (10 points): The FSM below looks like a counter. Draw a state diagram which illustrates its counting sequence.

