

**P1 (20 points):** For this problem, you are given two FSMs: FSM T has six states, one-bit input Z, and three-bit output  $X_2 X_1 X_0$ . FSM U has ten states, one-bit input G, and five-bit output Z  $Y_3 Y_2 Y_1 Y_0$ . These FSMs are connected as shown below:



Each FSM shown here has states determined by a sufficient number of positive-edge-triggered DFFs.

- a) Draw the state table for FSM U, a modulo-10 counter that counts down when G=1 and holds its value constant when G=0. Upon reset, FSM U should return to a state which outputs Y=9. The output Z=1 if Y=0 and G=1. Make state assignments such that the output Y is equal to the current state (note: the state variable and the output should not have the same name).
- b) FSM U has one input and four state variables, so each expression for the next state is a function of five inputs. To avoid using a 5-variable K-map, we will instead implement FSM U using four 2-to-1 MUXes with G as the select line. Let us assume that G=1. Derive the next state expressions assuming that G=1. Show that the K-maps for the next state variables produce these expressions.

For 
$$G = 1$$
:  $S_3^{new} = \bar{S}_3 \bar{S}_2 \bar{S}_1 \bar{S}_0 + S_3 \bar{S}_0, S_2^{new} = S_3 \bar{S}_0 + S_2 S_1 + S_2 S_0$   
 $S_1^{new} = S_2 \bar{S}_1 \bar{S}_0 + S_3 \bar{S}_0 + S_1 S_0, S_0^{new} = \bar{S}_0$ 



- c) FSM T is a modulo-6 counter that also counts down when Z=1 and resets to a state which outputs X=5. Draw the state table for FSM T.
- d) If both FSMs are treated as a single FSM as shown in the initial diagram, what type of circuit does it create? Please specify the direction, encoding, and modulus.

**P2 (15 points):** Perform state minimization on the following state diagrams.



**P3 (10 points):** Consider a state machine that detects if a number (F) is a multiple of three (3, 6, 9, 12...). Draw the specified ASM chart that will output Z=1 based on the input W. Let F be the number of clock cycles for which the input W has been one. Draw a Moore type ASM chart that outputs Z=1 if F is a multiple of 3.



**P4 (10 points):** For each of the following, convert each ASM chart to a FSM diagram.



P5 (10 points): Answer the following questions about register machines.

- a) How many possible operations can be performed in a register machine? List and explain each operation.
- b) How does a register machine perform an if statement? Explain your answer.

| Step | Instruction | Register | Go to step | [Branch to step] |
|------|-------------|----------|------------|------------------|
| 1    | Deb         | 1        | 2          | 7                |
| 2    | Deb         | 2        | 3          | 5                |
| 3    | Inc         | 0        | 4          |                  |
| 4    | Inc         | 3        | 2          |                  |
| 5    | Deb         | 3        | 6          | 1                |
| 6    | Inc         | 2        | 5          |                  |
| 7    | End         |          |            |                  |

**P6 (15 points):** Consider the following register machine:

Syntax note: register 0 is shortened to R0, register 1 is R1, and so on.

- a) Let R0 = 0, R1 = 3, R2 = 2, and R3 = 0.What will be the values stored in R0, R1, R2, and R3 after the machine finishes running?
- b) Let R0 = 0, R1 = 0, R2 = 100, and R3 = 0.What will be the values stored in R0, R1, R2, and R3 after the machine finishes running?

c) Let R0 = 0, R1 = x, R2 = y, and R3 = 0 where x and y are two random integers.
Write the value of R0, R1, R2, and R3 in terms of x, y, and necessary constant numbers. (e.g. R0 = x+y, R1 = 3, and so on).

**P7 (15 points)**: Consider a register machine with three registers (R0, R1, and R2). Let R0 = ?, R1 =  $\mathbf{x}$ , and R2 =  $\mathbf{y}$ . The value stored in R0 is unknown, and the values  $\mathbf{x}$  and  $\mathbf{y}$  are two random integers. Write out the instructions for the register machine that will add  $\mathbf{x}$  and  $\mathbf{y}$  and store the sum in R0 (e.g. R0 =  $\mathbf{x} + \mathbf{y}$ , R1 = 0, R2 = 0).

**P8 (5 points)**: Refer to the lecture slides for *the i281 CPU* to answer the following questions about the i281 CPU:

- a) How many control signals (number of wires) does the i281 CPU have?
- b) What control signal(s) select the ALU operation?
- c) What is the name of control signal C17 and what block does it control?
- d) How many bits does each instruction have (e.g. how wide is each register in the instruction memory)?
- e) How many bits of each instruction go to the OpCode Decoder? Which part of each instruction?