Name:			ID Number:		
Lab Section:	Tue 11-2 (#16)	Wed 8-11 (#8)	Thur 11-2 (#14)	Fri 11-2 (#7)	
(circle one)	Tue 2-5 (#11)	Wed 11-2 (#18)	Thur 11-2 (#17)		
			Thur 2-5 (#10)		

1. True/False Questions (10 x 1p each = 10p)

(a) I forgot to write down my name, student ID number, and lab section.	TRUE / FALSE
(b) Any Boolean function can be implemented using only AND gates.	TRUE / FALSE
(c) There are at least 4 different ways to draw a 3-variable K-Map.	TRUE / FALSE
(d) Wampas and tauntauns are native to the ice planet Hoth.	TRUE / FALSE
(e) The axioms of Boolean algebra can be proven with the theorems.	TRUE / FALSE
(f) $XOR(x, x) = x$.	TRUE / FALSE
(g) NAND(x , 0) = \overline{x} .	TRUE / FALSE
(h) $\bar{x} (x + \bar{y}) y = 0$.	TRUE / FALSE
(i) $\overline{\mathbf{x}} + \mathbf{x} \mathbf{y} = \mathbf{x} + \mathbf{y}$.	TRUE / FALSE
(j) An SOP expression easily maps to a NOR-NOR implementation.	TRUE / FALSE

2. Three-Variable K-Map (5p)

Use a K-map to derive the minimum <u>SOP</u> expression for $f(x, y, z) = \prod M(1, 4, 5)$.

- 3. Multiplexer (5p + 5p = 10p)
 - (a) Draw the circuit diagram for a 2-to-1 multiplexer, which has a Boolean expression $F = \overline{S} A + S B$

(b) Redraw your circuit form a) using only NAND gates. Clearly label all inputs and outputs of the circuit.

4. Number Conversions (4 x 5p each = 20p)
(a) Convert 10101101₂ to decimal

(b) Convert **123**₁₀ to binary

(c) Convert **227**₁₀ to hexadecimal

(d) Convert **COFFEE**₁₆ to octal.

5. From Verilog Code to Circuit (10p)

Draw the circuit diagram that corresponds to the Verilog module shown below. Clearly label all inputs, outputs and wires of your circuit.

```
module mystery (A,B,C,F);
input A,B,C;
output F;
nand(X, C, C)
nand(Y, A, B);
nand(Z, Y, X);
nand(F, Z, Z);
endmodule
```

- 6. Truth Tables (3 x 5p = 15p)
- (a) Draw the truth table for the Boolean function $F(X, Y) = (X + \overline{Y})(\overline{X} + \overline{Y})$ Show partial results for each of the two terms.

(b) Use a truth table to determine if the following Boolean equation is true:

 $\overline{\mathbf{A}} \,\overline{\mathbf{C}} + \overline{\mathbf{A}} \,\overline{\mathbf{B}} + \overline{\mathbf{A}} \,\mathbf{B} \,\mathbf{C} = \overline{\mathbf{A}}$

(c) Draw the truth tables for the following 5 logic gates: AND, OR, XOR, NAND, NOR. Clearly label which table corresponds to which gate.

- 7. Derive the minimum \underline{POS} expression using a K-map (10p + 5p = 15p)
- (a) Use a K-map to derive the minimum-cost <u>POS</u> expression for the following function $f(w, x, y, z) = \Sigma m(4, 5, 6, 14, 15) + D(7, 9)$

(b) Draw the circuit diagram for the expression derived in (a) using <u>only NOR gates</u>. Clearly label all inputs and outputs.

- 8. Circuit Simplification (3 x 5p = 15p)
- (a) Draw the circuit diagram for this Boolean expression (don't simplify it yet)

 $F(A, B, C) = (A + B + C) (A + \overline{B} + C) (B + C)$

(b) Use the theorems of Boolean algebra to find a minimum-cost <u>SOP</u> expression for F.

(c) Draw the circuit for the minimum-cost <u>SOP</u> expression. Label all inputs and outputs.

- **9.** Minimization (**3** x 5p = 15p)
- (a) Draw the K-map that corresponds to the following Boolean function:

$$\mathbf{f} = \mathbf{w} \,\overline{\mathbf{x}} \,\mathbf{z} + \mathbf{w} \,\mathbf{x} \,\overline{\mathbf{y}} \,\overline{\mathbf{z}} + \mathbf{x} \,\mathbf{y} \,\overline{\mathbf{z}} + \overline{\mathbf{w}} \,\overline{\mathbf{x}} \,\mathbf{z}$$

(b) Redraw the K-map from (a) and derive the minimum-cost <u>SOP</u> expression for f.

(c) Draw the circuit for the minimum-cost <u>SOP</u> expression using only NAND gates. Clearly label all inputs and outputs.

- **10.** Boolean Algebra (10p + 5p = 15p)
- (a) Use the theorems of Boolean algebra to simplify the formula given below into a minimum-cost expression.
- (b) Draw the circuit diagram for the simplified expression using only NOR gates.

 $F(X, Y, Z) = \overline{(X + \overline{X}\overline{Y})} (X + Y + \overline{Z}) + \overline{(X + \overline{Y} + X\overline{Y})} (\overline{X} \ \overline{Y} \ Z)$

Question	Max	Score
1. True/False	10	
2. Three-Variable K-map	5	
3. Multiplexer	10	
4. Number Conversions	20	
5. Verilog Module	10	
6. Truth Tables	15	
7. POS with K-Map	15	
8. Circuit Simplification	15	
9. Minimization	15	
10. Boolean Algebra	15	
TOTAL:	130	