CprE 281: Digital Logic

Midterm 1: Friday Sep 18, 2020

Name: \qquad

Lab Section:	Tue 11-2 (\#16)	Wed 8-11 (\#8)
(circle one)	Tue 2-5 (\#11)	Wed 11-2 (\#18

ID Number:

\qquad

Thur 11-2 (\#14) Fri 11-2 (\#7)
Thur 11-2 (\#17)
Thur 2-5 (\#10)

1. $\operatorname{True} /$ False Questions ($10 \times 1 \mathrm{p}$ each $=10 \mathrm{p}$)

(a) I forgot to write down my name, student ID number, and lab section. TRUE / FALSE
(b) Any Boolean function can be implemented using only AND gates. TRUE / FALSE
(c) There are at least 4 different ways to draw a 3-variable K-Map. TRUE / FALSE
(d) Wampas and tauntauns are native to the ice planet Hoth.

TRUE / FALSE
(e) The axioms of Boolean algebra can be proven with the theorems. TRUE / FALSE
(f) $\operatorname{XOR}(\mathrm{x}, \mathrm{x})=\mathrm{x}$.

TRUE / FALSE
(g) $\operatorname{NAND}(\mathrm{x}, 0)=\overline{\mathrm{x}}$. TRUE / FALSE
(h) $\bar{x}(x+\bar{y}) y=0$. TRUE / FALSE
(i) $\bar{x}+x y=x+y$. TRUE / FALSE
(j) An SOP expression easily maps to a NOR-NOR implementation. TRUE / FALSE

2. Three-Variable K-Map (5p)

Use a K-map to derive the minimum $\underline{\text { SOP }} \operatorname{expression~for~} f(x, y, z)=\Pi M(1,4,5)$.
3. Multiplexer ($5 \mathrm{p}+5 \mathrm{p}=10 \mathrm{p}$)
(a) Draw the circuit diagram for a 2-to-1 multiplexer, which has a Boolean expression $\mathbf{F}=\overline{\mathbf{S}} \mathbf{A}+\mathbf{S} \mathbf{B}$
(b) Redraw your circuit form a) using only NAND gates. Clearly label all inputs and outputs of the circuit.
4. Number Conversions ($4 \times 5 p$ each $=20 p$)
(a) Convert 10101101_{2} to decimal
(b) Convert 123_{10} to binary
(c) Convert 22710 to hexadecimal
(d) Convert COFFEE 16 to octal.

5. From Verilog Code to Circuit (10p)

Draw the circuit diagram that corresponds to the Verilog module shown below. Clearly label all inputs, outputs and wires of your circuit.

```
module mystery (A,B,C,F);
    input A,B,C;
    output F;
    nand( }\textrm{X},\textrm{C},\textrm{C}
    nand(Y, A, B);
    nand(Z, Y, X);
    nand(F, Z, Z);
endmodule
```

6. Truth Tables ($3 \times 5 \mathrm{p}=15 \mathrm{p}$)
(a) Draw the truth table for the Boolean function $\mathbf{F}(\mathbf{X}, \mathbf{Y})=(\mathbf{X}+\overline{\mathbf{Y}})(\overline{\mathbf{X}}+\overline{\mathbf{Y}})$ Show partial results for each of the two terms.
(b) Use a truth table to determine if the following Boolean equation is true:

$$
\overline{\mathbf{A}} \overline{\mathbf{C}}+\overline{\mathbf{A}} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B} \mathbf{C}=\overline{\mathbf{A}}
$$

(c) Draw the truth tables for the following 5 logic gates: AND, OR, XOR, NAND, NOR. Clearly label which table corresponds to which gate.
7. Derive the minimum POS expression using a $K-m a p(10 p+5 p=15 p)$
(a) Use a K-map to derive the minimum-cost $\underline{P O S}$ expression for the following function $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(4,5,6,14,15)+\mathrm{D}(7,9)$
(b) Draw the circuit diagram for the expression derived in (a) using only NOR gates. Clearly label all inputs and outputs.
8. Circuit Simplification ($3 \times 5 p=15 p$)
(a) Draw the circuit diagram for this Boolean expression (don't simplify it yet)

$$
\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=(\mathbf{A}+\mathbf{B}+\mathbf{C})(\mathbf{A}+\overline{\mathbf{B}}+\mathbf{C})(\mathbf{B}+\mathbf{C})
$$

(b) Use the theorems of Boolean algebra to find a minimum-cost SOP expression for F.
(c) Draw the circuit for the minimum-cost $\underline{\text { SOP }}$ expression. Label all inputs and outputs.
9. Minimization ($3 \times 5 \mathrm{p}=15 \mathrm{p}$)
(a) Draw the K-map that corresponds to the following Boolean function:

$$
\mathbf{f}=\mathbf{w} \overline{\mathbf{x}} \mathbf{z}+\mathbf{w} \mathbf{x} \overline{\mathbf{y}} \overline{\mathbf{z}}+\mathbf{x} \mathbf{y} \overline{\mathbf{z}}+\overline{\mathbf{w}} \overline{\mathbf{x}} \mathbf{z}
$$

(b) Redraw the K-map from (a) and derive the minimum-cost $\underline{\text { SOP }}$ expression for f .
(c) Draw the circuit for the minimum-cost SOP expression using only NAND gates. Clearly label all inputs and outputs.
10. Boolean Algebra ($10 p+5 p=15 p$)
(a) Use the theorems of Boolean algebra to simplify the formula given below into a minimum-cost expression.
(b) Draw the circuit diagram for the simplified expression using only NOR gates.

$$
F(X, Y, Z)=\overline{(X+\bar{X} \bar{Y}})(X+Y+\bar{Z})+\overline{(X+\bar{Y}+X \bar{Y}})(\bar{X} \bar{Y} Z)
$$

Question	Max	Score
1. True/False	10	
2. Three-Variable K-map	5	
3. Multiplexer	10	
4. Number Conversions	20	
5. Verilog Module	10	
6. Truth Tables	15	
7. POS with K-Map	15	
8. Circuit Simplification	15	
9. Minimization	15	
10. Boolean Algebra	15	
TOTAL:	130	

