

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• **HW4 is due today**

Administrative Stuff

• **HW5 is due next Monday**

Administrative Stuff

• **The first midterm is this Friday**

Quick Review

Number Systems

 $N = d_n B^n + d_{n-1} B^{n-1} + \cdots + d_1 B^1 + d_0 B^0$

Number Systems

Number Systems

The Decimal System

$524_{10} = 5 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0}$

The Decimal System

$524_{10} = 5 \times 10^{2} + 2 \times 10^{1} + 4 \times 10^{0}$

$= 5 \times 100 + 2 \times 10 + 4 \times 1$

 $=500+20+4$

 $=524_{10}$

101 100

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0.

Base 7

$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$

Base 7

$$
5247 = 5 \times 72 + 2 \times 71 + 4 \times 70
$$

= 5 \times 49 + 2 \times 7 + 4 \times 1
= 245 + 14 + 4
= 263₁₀

Binary Numbers (Base 2)

 $1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

Binary Numbers (Base 2)

Binary Numbers (Base 2)

 $1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 =$ $= 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 =$ $= 8 + 0 + 0 + 1 =$ $= 9_{10}$

Another Example

Powers of 2

What is the value of this binary number?

- **0 0 1 0 1 1 0 0**
- **0 0 1 0 1 1 0 0**
- **0*27 + 0*26 + 1*25 + 0*24 + 1*23 + 1*22 + 0*21 + 0*20**
- **0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1**
- **0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1**
- **32+ 8 + 4 = 44 (in decimal)**

Signed v.s. Unsigned Numbers

Two Different Types of Binary Numbers

Unsigned numbers

- **All bits jointly represent a positive integer.**
- **Negative numbers cannot be represented this way.**

Signed numbers

- **The left-most bit represents the sign of the number.**
- **If that bit is 0, then the number is positive.**
- **If that bit is 1, then the number is negative.**
- **The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.**

Unsigned Representation

This represents + 44.

Unsigned Representation

This represents + 172.

Signed Representation (using the left-most bit as the sign)

This represents + 44.

Signed Representation (using the left-most bit as the sign)

This represents – 44.

Today's Lecture is About Addition of Unsigned Numbers

Addition of two 1-bit numbers

[Figure 3.1a from the textbook]

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (the truth table)

[Figure 2.12 from the textbook]

Addition of two 1-bit numbers (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(c) Circuit

(d) Graphical symbol

[Figure 3.1c-d from the textbook]

Addition of Multibit Unsigned Numbers

3 8 9 1 5 7 5 4 6 +

$$
\begin{array}{c c c c c c c c c} & c_1 & c_0 \\ & x_2 & x_1 & x_0 \\ & & y_2 & y_1 & y_0 \\ \hline & & & s_2 & s_1 & s_0 \end{array}
$$

given these 3 inputs

$$
\begin{array}{c|c}\n & c_3 & c_2 & c_1 & c_0 \\
& x_2 & x_1 & x_0 \\
& & y_2 & y_1 & y_0 \\
\hline\n & & & s_2 & s_1 & s_0\n\end{array}
$$

given these 3 inputs

compute these 2 outputs

Addition of multibit numbers

Bit position *i*
Problem Statement and Truth Table

 $c_{i+1} =$

 c_{i+1}

 c_{i+1}

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

The circuit for the two expressions

This is called the Full-Adder

XOR Magic

 $s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$

XOR Magic

 $s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$

 $s_i = (\overline{x}_i y_i + x_i \overline{y}_i) \overline{c}_i + (\overline{x}_i \overline{y}_i + x_i y_i) c_i$ $=(x_i \oplus y_i)\overline{c}_i + (x_i \oplus y_i)c_i$ $=(x_i \oplus y_i) \oplus c_i$

XOR Magic

 $s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$

Can you prove this?

XOR Magic (si can be implemented in two different ways) $s_i = x_i \oplus y_i \oplus c_i$

A decomposed implementation of the full-adder circuit

(b) Detailed diagram

[Figure 3.4 from the textbook]

The Full-Adder Abstraction

The Full-Adder Abstraction

We can place the arrows anywhere

*n***-bit ripple-carry adder**

*n***-bit ripple-carry adder abstraction**

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Example: Computing 5+6 using a 5-bit adder

Example: Computing 5+6 using a 5-bit adder

Design Example:

Create a circuit that multiplies a number by 3

How to Get 3A from A?

- **3A = A + A + A**
- $3A = (A+A) + A$
- \cdot $3A = 2A + A$

[Figure 3.6a from the textbook]

[Figure 3.6a from the textbook]

[Figure 3.6a from the textbook]

[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = ?

542 x 10 = ?

1245 x 10 = ?

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = 40

542 x 10 = 5420

1245 x 10 = 12450

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = 40

542 x 10 = 5420

1245 x 10 = 12450

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number

[Figure 3.6b from the textbook]

[Figure 3.6b from the textbook]

Questions?

THE END