

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• HW4 is due today

Administrative Stuff

• HW5 is due next Monday

Administrative Stuff

• The first midterm is this Friday

Quick Review

Number Systems

 $N = d_n B^n + d_{n-1} B^{n-1} + \dots + d_1 B^1 + d_0 B^0$

Number Systems

Number Systems

The Decimal System

$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$

The Decimal System

$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$

$=5{\times}100{+}2{\times}10{+}4{\times}1$

= 500 + 20 + 4

 $= 524_{10}$

 $10^2 \quad 10^1 \quad 10^0$

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0.

Base 7

$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$

Base 7

$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$

= 5 \times 49 + 2 \times 7 + 4 \times 1
= 245 + 14 + 4
= 263_{10}

Binary Numbers (Base 2)

 $1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

Binary Numbers (Base 2)

Binary Numbers (Base 2)

Another Example

Powers of 2

2^{10}	=	1024
2^{9}	=	512
2^{8}	=	256
2^{7}	=	128
2^{6}	=	64
2^{5}	=	32
2^{4}	=	16
2^{3}	=	8
2^2	=	4
2^{1}	=	2
2^{0}	=	1

What is the value of this binary number?

- 00101100
- 0 0 1 0 1 1 0 0
- $0^{*}2^{7}$ + $0^{*}2^{6}$ + $1^{*}2^{5}$ + $0^{*}2^{4}$ + $1^{*}2^{3}$ + $1^{*}2^{2}$ + $0^{*}2^{1}$ + $0^{*}2^{0}$
- 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1
- 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1
- 32+ 8 + 4 = 44 (in decimal)

Signed v.s. Unsigned Numbers

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Unsigned Representation

This represents + 44.

Unsigned Representation

This represents + 172.

Signed Representation (using the left-most bit as the sign)

This represents + 44.

Signed Representation (using the left-most bit as the sign)

This represents – 44.

Today's Lecture is About Addition of Unsigned Numbers

Addition of two 1-bit numbers

[Figure 3.1a from the textbook]

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (the truth table)

	Carry	Sum
<i>x y</i>	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

[Figure 2.12 from the textbook]

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

		I		
x y	С		S	
0 0	0		0	
0 1	0		1	
1 0	0		1	
1 1	1		0	

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

 x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x y	С	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Addition of two 1-bit numbers (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(c) Circuit

(d) Graphical symbol

[Figure 3.1c-d from the textbook]

Addition of Multibit Unsigned Numbers

		s ₂	s_1	\mathbf{S}_0
•		\mathbf{Y}_2	\mathbf{y}_1	Y ₀
∔		\mathbf{X}_2	\mathbf{X}_1	\mathbf{x}_{0}
	C ₃	C ₂	c_1	\mathbf{C}_0

given these 3 inputs

$$\begin{array}{c|ccccc} & c_{3} & c_{2} & c_{1} & c_{0} \\ & & x_{2} & x_{1} & x_{0} \\ & & y_{2} & y_{1} & y_{0} \end{array}$$

given these 3 inputs

compute these 2 outputs

Addition of multibit numbers

Generated carries —	▶ 1110		 c_{i+1}	c_i	
$X = x_4 x_3 x_2 x_1 x_0$	01111	(15) ₁₀	 	x_i	
$+ Y = y_4 y_3 y_2 y_1 y_0$	+01010	$+(10)_{10}$	 	y_i	
$S = s_4 s_3 s_2 s_1 s_0$	11001	(25) ₁₀	 	s _i	

Bit position *i*
Problem Statement and Truth Table

c_i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0 0	0 1	1 0	$\begin{array}{c} 0\\ 0\end{array}$	1 1
0 1	$\frac{1}{0}$	1 0	$\begin{array}{c} 1\\ 0\end{array}$	0 1
1	0	1	1	0
1	1	1	1	1

 $c_{i+1} =$

 $c_{i+1} =$

 $c_{i+1} =$

c_i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

c_i	x_i	y _i	c_{i+1}	s _i
0	0	0	0	0
0 0	0 1	1 0	0 0	1 1
0	1	1	1	0
1 1	$0\\0$	0 1	0	1 0
1	1	0	1	0
1	1	I	1	1

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$

The circuit for the two expressions

This is called the Full-Adder

XOR Magic

 $s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$

XOR Magic

 $s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$

 $s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$ $= (x_{i} \oplus y_{i})\overline{c}_{i} + \overline{(x_{i} \oplus y_{i})}c_{i}$ $= (x_{i} \oplus y_{i}) \oplus c_{i}$

XOR Magic

 $s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$

Can you prove this?

XOR Magic (s_i can be implemented in two different ways) $s_i = x_i \oplus y_i \oplus c_i$

A decomposed implementation of the full-adder circuit

(b) Detailed diagram

[Figure 3.4 from the textbook]

The Full-Adder Abstraction

The Full-Adder Abstraction

We can place the arrows anywhere

n-bit ripple-carry adder

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Example: Computing 5+6 using a 5-bit adder

Example: Computing 5+6 using a 5-bit adder

Design Example:

Create a circuit that multiplies a number by 3

How to Get 3A from A?

- 3A = A + A + A
- 3A = (A+A) + A
- 3A = 2A +A

[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = ?

542 x 10 = ?

1245 x 10 = ?

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 $4 \times 10 = 40$

542 x 10 = 5420

 $1245 \times 10 = 12450$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 $4 \times 10 = 40$

542 x 10 = 5420

1245 x 10 = 12450

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number

[Figure 3.6b from the textbook]

[Figure 3.6b from the textbook]

Questions?

THE END