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Quick Review



[ Figure 3.1a from the textbook ]

Adding two bits
(there are four possible cases)



[ Figure 3.1b from the textbook ]

Adding two bits
(the truth table)

s



[ Figure 3.1c from the textbook ]

Adding two bits
(the logic circuit)



[ Figure 3.1c-d from the textbook ]

The Half-Adder



Bit position i

Addition of multibit numbers

[ Figure 3.2 from the textbook ]



Analogy with addition in base 10

c3 c2 c1 c0
x2 x1 x0
y2 y1 y0
s2 s1 s0

+



3 8 9
1 5 7
5 4 6

Analogy with addition in base 10

+



0 1 1 0
3 8 9
1 5 7
5 4 6

Analogy with addition in base 10

+
carry



Analogy with addition in base 10

c3 c2 c1 c0
x2 x1 x0
y2 y1 y0
s2 s1 s0

+



9 3 8
2 1 4

1 1 5 2

Another example in base 10

+



1 0 1 0
9 3 8
2 1 4
1 5 2

Another example in base 10

+
carry



Problem Statement and Truth Table

[ Figure 3.3a from the textbook ][ Figure 3.2b from the textbook ]



Let’s fill-in the two K-maps

[ Figure 3.3a-b from the textbook ]



Let’s fill-in the two K-maps

[ Figure 3.3a-b from the textbook ]



The circuit for the two expressions

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

[ Figure 3.3c from the textbook ]



XOR Magic
(si can be implemented in two different ways)



HA
HAs 

c 

s 
c 

c i 
x i 
y i 

c i 1 + 

s i 

c i 

x i 
y i 

c i 1 + 

s i 

(a) Block diagram 

(b) Detailed diagram

A decomposed implementation 
of the full-adder circuit

[ Figure 3.4 from the textbook ]
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HA
HAs 

c 

s 
c 

c i 
x i 
y i 

c i 1 + 

s i 

The Full-Adder Abstraction



FA
c i 
x i 
y i 

c i 1 + 

s i 

The Full-Adder Abstraction



FA

We can place the arrows anywhere

xi yi

si

ci+1 ci



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

MSB position LSB position

n-bit ripple-carry adder

[ Figure 3.5 from the textbook ]

-



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

MSB position LSB position

n-bit ripple-carry adder abstraction

-



x n – 1 

c n 

y n 1 –

s n 1 –

x 1 y 1 

s 1 

x 0 y 0 

s 0 

c 0 

n-bit ripple-carry adder abstraction



The x and y lines are typically 
grouped together for better visualization, 
but the underlying logic remains the same

x n – 1 

c n 

y n 1 –

s n 1 –

x 1 y 1 

s 1 

y 0 

s 0 

c 0 

x 0 



Example:
Computing 5+6 using a 5-bit adder



Example:
Computing 5+6 using a 5-bit adder

11 in decimal

5 in decimal 6 in decimal





Math Review: Subtraction

39
15-
??



Math Review: Subtraction

39
15-
24



Math Review: Subtraction

82
61-
??

48
26-
??

32
11-
??



Math Review: Subtraction

82
61-
21

48
26-
22

32
11-
21





Math Review: Subtraction

82
64-
??

48
29-
??

32
13-
??



Math Review: Subtraction

82
64-
18

48
29-
19

32
13-
19





The problems in which row are easier to calculate?

82
64-
??

48
29-
??

32
13-
??

82
61-
??

48
26-
??

32
11-
??



The problems in which row are easier to calculate?

82
64-
18

48
29-
19

32
13-
19

82
61-
21

48
26-
22

32
11-
21

Why?



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  

=  82 + (99 – 64) +1 - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  

=  82 + (99 – 64) +1 - 100  
Does not require borrows



9’s Complement
(subtract each digit from 9)

99
64-
35



10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64-
35 + 1 = 36



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    
9’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement

10’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement

=  82 + 36 - 100  

10’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

10’s complement

// Add the first two.



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

=    18

10’s complement

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.





bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

MagnitudeSign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Formats for representation of integers

[ Figure 3.7 from the textbook ]



Unsigned Representation 

0 0 1 0 1 1 0 0
2021222324252627

This represents + 44.



Unsigned Representation 

1 0 1 0 1 1 0 0
2021222324252627

This represents + 172.



Three Different Ways to 
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement



Three Different Ways to 
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement only this method is used 
in modern computers



[ Table 3.2 from the textbook ]

Interpretation of four-bit signed integers



Interpretation of four-bit signed integers

The top half is the same in all three representations.
It corresponds to the positive integers.



Interpretation of four-bit signed integers

In all three representations the first bit represents the sign.
If that bit is 1, then the number is negative.



Interpretation of four-bit signed integers

Notice that in this representation there are two zeros!



Interpretation of four-bit signed integers

There are two zeros in this representation as well!



Interpretation of four-bit signed integers

In this representation there is one more negative number.



Sign and Magnitude



Sign and Magnitude Representation
(using  the left-most bit as the sign)

0 0 1 0 1 1 0 0
20212223242526sign

This represents + 44.



1 0 1 0 1 1 0 0
20212223242526sign

This represents – 44.

Sign and Magnitude Representation
(using  the left-most bit as the sign)



Circuit for negating a number stored in 
sign and magnitude representation

y7

y7
_

y6

y6

y5

y5

y4

y4

y3

y3

y2

y2

y1

y1

y0

y0



Circuit for negating a number stored in 
sign and magnitude representation

0

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0



1’s Complement



Let K be the negative equivalent of an n-bit positive number P.

Then, in 1�s complement representation K is obtained by 
subtracting P from 2n – 1, namely

K = (2n – 1) – P

This means that K can be obtained by inverting all bits of P.

1�s complement
(subtract each digit from 1)



Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1�s complement representation K is obtained by 
subtracting P from 28 – 1, namely

K = (28 – 1) – P = 255 - P

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most 
significant bit must be zero to indicate that it is positive.

1�s complement
(subtract each digit from 1)



1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign



1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

25 + 23 + 22 = 44



1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

+ 44 in 1’s complement representation



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

negative

positive



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

27 +  26 + 24 + 21 + 20 = 211 (as unsigned)



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

211 = 255 – 44 (as unsigned)



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

- 44  in 1’s complement representation



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

No need to borrow!



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_
255

44



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

211

211 = 255 – 44 (as unsigned)



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

- 44

211 = 255 – 44 (as unsigned)
or

- 44  in 1’s complement representation



Circuit for negating a number stored in 
1’s complement representation

y7

y7
_

y6

y6
_

y5

y5
_

y4

y4
_

y3

y3
_

y2

y2
_

y1

y1
_

y0

y0
_



Circuit for negating a number stored in 
1’s complement representation

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1



This works in reverse too
(from negative to positive)



1’s Complement Representation

1 1 0 1 0 0 1 1
20212223242526sign

- 44



1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44



1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

44 = 255 – 211  (as unsigned)

211  (as unsigned)



1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

- 44 in 1’s complement representation

+ 44 in 1’s complement representation



Find the 1�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 0 1 1



Find the 1�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 0 1 1

1 0 1 0 1 1 0 1

1 0 0 01 1 0 0

Just flip 1's to 0's and vice versa.



A) Example of 1’s complement addition

+
0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )
7+( )

+

[ Figure 3.8 from the textbook ]



A) Example of 1’s complement addition

+
0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )
7+( )

+



B) Example of 1’s complement addition

+
1 1 0 0

1 0 1 0
0 0 1 0

5-( )
2+( )
3-( )

+

[ Figure 3.8 from the textbook ]



B) Example of 1’s complement addition

+
1 1 0 0

1 0 1 0
0 0 1 0

5-( )
2+( )
3-( )

+



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+( )

3+( )
+ 2–( )

[ Figure 3.8 from the textbook ]



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+( )

3+( )
+ 2–( )



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+( )

3+( )
+ 2–( )

But this is 2!



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1
1

0 0 1 1

5+( )

3+( )
+ 2–( )

We need to perform one 
more addition to get the result.



0 0 1 0

C) Example of 1’s complement addition

+
0 1 0 1
1 1 0 1

1
1

0 0 1 1

5+( )

3+( )
+ 2–( )

We need to perform one 
more addition to get the result.



D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–( )

7–( )
+ 2–( )

[ Figure 3.8 from the textbook ]



D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–( )

7–( )
+ 2–( )



D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–( )

7–( )
+ 2–( )

But this is +7!



D) Example of 1’s complement addition

We need to perform one 
more addition to get the result.

+
0 1 1 1

1 0 1 0
1 1 0 1

1
1

1 0 0 0

5–( )

7–( )
+ 2–( )



D) Example of 1’s complement addition

We need to perform one 
more addition to get the result.

+
0 1 1 1

1 0 1 0
1 1 0 1

1
1

1 0 0 0

5–( )

7–( )
+ 2–( )



2’s Complement



Let K be the negative equivalent of an n-bit positive number P.

Then, in 2�s complement representation K is obtained by 
subtracting P from 2n , namely

K = 2n – P

2�s complement
(subtract each digit from 1 and add 1 to the result)



Let K be the negative equivalent of an 8-bit positive number P.

Then, in 2�s complement representation K is obtained by 
subtracting P from 28 , namely

K = 28 – P = 256 - P

2�s complement
(subtract each digit from 1 and add 1 to the result)



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

negative

positive



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

212 = 256 - 44



For a positive n-bit number P, let K1 and K2 denote its 1�s 
and 2�s complements, respectively.

K1 = (2n – 1) – P

K2 = 2n – P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s 
complement can computed by inverting all bits of P and then 
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement



For a positive 8-bit number P, let K1 and K2 denote its 1�s 
and 2�s complements, respectively.

K1 = (2n – 1) – P = 255 - P

K2 = 2n – P = 256 - P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s 
complement can computed by inverting all bits of P and then 
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0

1 0 1 1 1 0 0 0

1 1 0 1

Invert all bits.



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0
1

1 0 1 1
+

1 0 1 1
1

1 1 0 0
+

1 0 0 0
1

1 0 0 1
+

1 1 0 1
1

1 1 1 0
+

Then add 1.



Circuit for inverting a number stored in  
2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0



Quick way (for a human)
to find 2’s complement

• Scan the binary number from right to left

• Copy all bits that are 0 from right to left

• Stop at the first 1

• Copy that 1 as well

• Invert all remaining bits



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

.  .  .  .

.  .  0 0 .  .  .  .

.  .  .  0

Copy all bits that are 0 from right to left.



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

.  .  .  1

.  1 0 0 .  .  .  1

.  .  1 0

Stop at the first 1. Copy that 1 as well.



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 1

1 1 0 0 1 0 0 1

1 1 1 0

Invert all remaining bits.



The number circle for 2's complement

[ Figure 3.11a from the textbook ]



A) Example of 2�s complement addition

[ Figure 3.9 from the textbook ]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )

7+( )

+



B) Example of 2�s complement addition

+

1 1 0 1

1 0 1 1
0 0 1 02+( )

5–( )

3–( )

+

[ Figure 3.9 from the textbook ]



C) Example of 2�s complement addition

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+( )

3+( )

+ 2–( )

[ Figure 3.9 from the textbook ]



D) Example of 2�s complement addition

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–( )

7–( )

+ 2–( )

[ Figure 3.9 from the textbook ]





Naming Ambiguity: 2's Complement

2's complement has two different meanings:

• representation for signed integer numbers

• algorithm for computing the 2's complement 
(regardless of the representation of the number)



Naming Ambiguity: 2's Complement

2's complement has two different meanings:

• representation for signed integer numbers
in 2's complement

• algorithm for computing the 2's complement 
(regardless of the representation of the number)
take the 2's complement



Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

means take the 2's complement



Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

means take the 2's complement

Notice that the minus changes to a plus.



Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]



Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]



[ Figure 3.11 from the textbook ]

Graphical interpretation of four-bit 
2’s complement numbers



Example of 2�s complement subtraction

[ Figure 3.10 from the textbook ]

–
1 0 1 1
0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0

5–( )

7–( )

2+( )



Example of 2�s complement subtraction

–
0 1 0 1
1 1 1 0

5+( )

7+( )

– +

0 1 1 1

0 1 0 1
0 0 1 02–( )

[ Figure 3.10 from the textbook ]



Example of 2�s complement subtraction

–
1 0 1 1
1 1 1 0– +

1 1 0 1

1 0 1 1
0 0 1 02–( )

5–( )

3–( )

[ Figure 3.10 from the textbook ]



decimal b3 b2 b1 b0 take the 2's 
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2�s complement negates the number



decimal b3 b2 b1 b0 take the 2's 
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2�s complement negates the number

This is
the only
exception



decimal b3 b2 b1 b0 take the 2's 
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2�s complement negates the number

And this 
one too.



–
1 0 1 1
1 0 0 0– +

1 0 0 1 1

1 0 1 1
1 0 0 08–( )

5–( )

3+ ( )

ignore

But that exception does not matter



But that exception does not matter

Add 8



Subtract 8

But that exception does not matter



Take-Home Message

• Subtraction can be performed by simply adding the 
2’s complement of the second number, regardless of 
the signs of the two numbers.

• Thus, the same adder circuit can be used to perform 
both addition and subtraction !!!



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –
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y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Adder/subtractor unit
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XOR as a repeater
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XOR as an inverter
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[ Figure 3.12 from the textbook ]

Addition: when control = 0
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Addition: when control = 0

0

000



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0
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[ Figure 3.12 from the textbook ]

Subtraction: when control = 1
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Subtraction: when control = 1
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Subtraction: when control = 1
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Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the 
first column!
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[ Figure 3.13 from the textbook ]
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Calculating overflow for 4-bit numbers 
with only three significant bits



Calculating overflow for n-bit numbers 
with only n-1 significant bits
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X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.
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In 2's complement, both +9 and -9 are not representable with 4 bits.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3



Questions?



THE END


