
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Signed Numbers

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Signed Integer Numbers

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Quick Review

[Figure 3.1a from the textbook]

Adding two bits
(there are four possible cases)

[Figure 3.1b from the textbook]

Adding two bits
(the truth table)

s

[Figure 3.1c from the textbook]

Adding two bits
(the logic circuit)

[Figure 3.1c-d from the textbook]

The Half-Adder

Bit position i

Addition of multibit numbers

[Figure 3.2 from the textbook]

Analogy with addition in base 10

c3 c2 c1 c0
x2 x1 x0
y2 y1 y0
s2 s1 s0

+

3 8 9
1 5 7
5 4 6

Analogy with addition in base 10

+

0 1 1 0
3 8 9
1 5 7
5 4 6

Analogy with addition in base 10

+
carry

Analogy with addition in base 10

c3 c2 c1 c0
x2 x1 x0
y2 y1 y0
s2 s1 s0

+

9 3 8
2 1 4

1 1 5 2

Another example in base 10

+

1 0 1 0
9 3 8
2 1 4
1 5 2

Another example in base 10

+
carry

Problem Statement and Truth Table

[Figure 3.3a from the textbook][Figure 3.2b from the textbook]

Let’s fill-in the two K-maps

[Figure 3.3a-b from the textbook]

Let’s fill-in the two K-maps

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

[Figure 3.3c from the textbook]

This is called the Full-Adder

[Figure 3.3c from the textbook]

XOR Magic
(si can be implemented in two different ways)

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

A decomposed implementation
of the full-adder circuit

[Figure 3.4 from the textbook]

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

A decomposed implementation
of the full-adder circuit

[Figure 3.4 from the textbook]

HA

HA

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

The Full-Adder Abstraction

FA
c i
x i
y i

c i 1 +

s i

The Full-Adder Abstraction

FA

We can place the arrows anywhere

xi yi

si

ci+1 ci

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

MSB position LSB position

n-bit ripple-carry adder

[Figure 3.5 from the textbook]

-

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

MSB position LSB position

n-bit ripple-carry adder abstraction

-

x n – 1

c n

y n 1 –

s n 1 –

x 1 y 1

s 1

x 0 y 0

s 0

c 0

n-bit ripple-carry adder abstraction

The x and y lines are typically
grouped together for better visualization,
but the underlying logic remains the same

x n – 1

c n

y n 1 –

s n 1 –

x 1 y 1

s 1

y 0

s 0

c 0

x 0

Example:
Computing 5+6 using a 5-bit adder

Example:
Computing 5+6 using a 5-bit adder

11 in decimal

5 in decimal 6 in decimal

Math Review: Subtraction

39
15-
??

Math Review: Subtraction

39
15-
24

Math Review: Subtraction

82
61-
??

48
26-
??

32
11-
??

Math Review: Subtraction

82
61-
21

48
26-
22

32
11-
21

Math Review: Subtraction

82
64-
??

48
29-
??

32
13-
??

Math Review: Subtraction

82
64-
18

48
29-
19

32
13-
19

The problems in which row are easier to calculate?

82
64-
??

48
29-
??

32
13-
??

82
61-
??

48
26-
??

32
11-
??

The problems in which row are easier to calculate?

82
64-
18

48
29-
19

32
13-
19

82
61-
21

48
26-
22

32
11-
21

Why?

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

= 82 + (99 + 1 – 64) - 100

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

= 82 + (99 + 1 – 64) - 100

= 82 + (99 – 64) +1 - 100

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

= 82 + (99 + 1 – 64) - 100

= 82 + (99 – 64) +1 - 100
Does not require borrows

9’s Complement
(subtract each digit from 9)

99
64-
35

10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64-
35 + 1 = 36

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100
9’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

9’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

9’s complement

10’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

9’s complement

= 82 + 36 - 100

10’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

= 118 - 100

9’s complement

= 82 + 36 - 100

10’s complement

// Add the first two.

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

= 118 - 100

9’s complement

= 82 + 36 - 100

= 18

10’s complement

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.

bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

MagnitudeSign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Formats for representation of integers

[Figure 3.7 from the textbook]

Unsigned Representation

0 0 1 0 1 1 0 0
2021222324252627

This represents + 44.

Unsigned Representation

1 0 1 0 1 1 0 0
2021222324252627

This represents + 172.

Three Different Ways to
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement

Three Different Ways to
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement only this method is used
in modern computers

[Table 3.2 from the textbook]

Interpretation of four-bit signed integers

Interpretation of four-bit signed integers

The top half is the same in all three representations.
It corresponds to the positive integers.

Interpretation of four-bit signed integers

In all three representations the first bit represents the sign.
If that bit is 1, then the number is negative.

Interpretation of four-bit signed integers

Notice that in this representation there are two zeros!

Interpretation of four-bit signed integers

There are two zeros in this representation as well!

Interpretation of four-bit signed integers

In this representation there is one more negative number.

Sign and Magnitude

Sign and Magnitude Representation
(using the left-most bit as the sign)

0 0 1 0 1 1 0 0
20212223242526sign

This represents + 44.

1 0 1 0 1 1 0 0
20212223242526sign

This represents – 44.

Sign and Magnitude Representation
(using the left-most bit as the sign)

Circuit for negating a number stored in
sign and magnitude representation

y7

y7
_

y6

y6

y5

y5

y4

y4

y3

y3

y2

y2

y1

y1

y0

y0

Circuit for negating a number stored in
sign and magnitude representation

0

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1’s Complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1�s complement representation K is obtained by
subtracting P from 2n – 1, namely

K = (2n – 1) – P

This means that K can be obtained by inverting all bits of P.

1�s complement
(subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1�s complement representation K is obtained by
subtracting P from 28 – 1, namely

K = (28 – 1) – P = 255 - P

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most
significant bit must be zero to indicate that it is positive.

1�s complement
(subtract each digit from 1)

1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

25 + 23 + 22 = 44

1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

+ 44 in 1’s complement representation

1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

negative

positive

1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

27 + 26 + 24 + 21 + 20 = 211 (as unsigned)

1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

211 = 255 – 44 (as unsigned)

1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

- 44 in 1’s complement representation

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

No need to borrow!

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_
255

44

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

211

211 = 255 – 44 (as unsigned)

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

- 44

211 = 255 – 44 (as unsigned)
or

- 44 in 1’s complement representation

Circuit for negating a number stored in
1’s complement representation

y7

y7
_

y6

y6
_

y5

y5
_

y4

y4
_

y3

y3
_

y2

y2
_

y1

y1
_

y0

y0
_

Circuit for negating a number stored in
1’s complement representation

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

This works in reverse too
(from negative to positive)

1’s Complement Representation

1 1 0 1 0 0 1 1
20212223242526sign

- 44

1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

44 = 255 – 211 (as unsigned)

211 (as unsigned)

1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

- 44 in 1’s complement representation

+ 44 in 1’s complement representation

Find the 1�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 0 1 1

Find the 1�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 0 1 1

1 0 1 0 1 1 0 1

1 0 0 01 1 0 0

Just flip 1's to 0's and vice versa.

A) Example of 1’s complement addition

+
0 1 1 1

0 1 0 1
0 0 1 0

5+()
2+()
7+()

+

[Figure 3.8 from the textbook]

A) Example of 1’s complement addition

+
0 1 1 1

0 1 0 1
0 0 1 0

5+()
2+()
7+()

+

B) Example of 1’s complement addition

+
1 1 0 0

1 0 1 0
0 0 1 0

5-()
2+()
3-()

+

[Figure 3.8 from the textbook]

B) Example of 1’s complement addition

+
1 1 0 0

1 0 1 0
0 0 1 0

5-()
2+()
3-()

+

C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+()

3+()
+ 2–()

[Figure 3.8 from the textbook]

C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+()

3+()
+ 2–()

C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+()

3+()
+ 2–()

But this is 2!

C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1
1

0 0 1 1

5+()

3+()
+ 2–()

We need to perform one
more addition to get the result.

0 0 1 0

C) Example of 1’s complement addition

+
0 1 0 1
1 1 0 1

1
1

0 0 1 1

5+()

3+()
+ 2–()

We need to perform one
more addition to get the result.

D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–()

7–()
+ 2–()

[Figure 3.8 from the textbook]

D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–()

7–()
+ 2–()

D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–()

7–()
+ 2–()

But this is +7!

D) Example of 1’s complement addition

We need to perform one
more addition to get the result.

+
0 1 1 1

1 0 1 0
1 1 0 1

1
1

1 0 0 0

5–()

7–()
+ 2–()

D) Example of 1’s complement addition

We need to perform one
more addition to get the result.

+
0 1 1 1

1 0 1 0
1 1 0 1

1
1

1 0 0 0

5–()

7–()
+ 2–()

2’s Complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2�s complement representation K is obtained by
subtracting P from 2n , namely

K = 2n – P

2�s complement
(subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 2�s complement representation K is obtained by
subtracting P from 28 , namely

K = 28 – P = 256 - P

2�s complement
(subtract each digit from 1 and add 1 to the result)

2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

negative

positive

2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

212 = 256 - 44

For a positive n-bit number P, let K1 and K2 denote its 1�s
and 2�s complements, respectively.

K1 = (2n – 1) – P

K2 = 2n – P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s
complement can computed by inverting all bits of P and then
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement

For a positive 8-bit number P, let K1 and K2 denote its 1�s
and 2�s complements, respectively.

K1 = (2n – 1) – P = 255 - P

K2 = 2n – P = 256 - P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s
complement can computed by inverting all bits of P and then
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0

1 0 1 1 1 0 0 0

1 1 0 1

Invert all bits.

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0
1

1 0 1 1
+

1 0 1 1
1

1 1 0 0
+

1 0 0 0
1

1 0 0 1
+

1 1 0 1
1

1 1 1 0
+

Then add 1.

Circuit for inverting a number stored in
2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0

Quick way (for a human)
to find 2’s complement

• Scan the binary number from right to left

• Copy all bits that are 0 from right to left

• Stop at the first 1

• Copy that 1 as well

• Invert all remaining bits

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

. . . .

. . 0 0

. . . 0

Copy all bits that are 0 from right to left.

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

. . . 1

. 1 0 0 . . . 1

. . 1 0

Stop at the first 1. Copy that 1 as well.

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 1

1 1 0 0 1 0 0 1

1 1 1 0

Invert all remaining bits.

The number circle for 2's complement

[Figure 3.11a from the textbook]

A) Example of 2�s complement addition

[Figure 3.9 from the textbook]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+()
2+()

7+()

+

B) Example of 2�s complement addition

+

1 1 0 1

1 0 1 1
0 0 1 02+()

5–()

3–()

+

[Figure 3.9 from the textbook]

C) Example of 2�s complement addition

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+()

3+()

+ 2–()

[Figure 3.9 from the textbook]

D) Example of 2�s complement addition

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–()

7–()

+ 2–()

[Figure 3.9 from the textbook]

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

• representation for signed integer numbers

• algorithm for computing the 2's complement
(regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

• representation for signed integer numbers
in 2's complement

• algorithm for computing the 2's complement
(regardless of the representation of the number)
take the 2's complement

Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

means take the 2's complement

Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

means take the 2's complement

Notice that the minus changes to a plus.

Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

Example of 2�s complement subtraction

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

[Figure 3.11 from the textbook]

Graphical interpretation of four-bit
2’s complement numbers

Example of 2�s complement subtraction

[Figure 3.10 from the textbook]

–
1 0 1 1
0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0

5–()

7–()

2+()

Example of 2�s complement subtraction

–
0 1 0 1
1 1 1 0

5+()

7+()

– +

0 1 1 1

0 1 0 1
0 0 1 02–()

[Figure 3.10 from the textbook]

Example of 2�s complement subtraction

–
1 0 1 1
1 1 1 0– +

1 1 0 1

1 0 1 1
0 0 1 02–()

5–()

3–()

[Figure 3.10 from the textbook]

decimal b3 b2 b1 b0 take the 2's
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2�s complement negates the number

decimal b3 b2 b1 b0 take the 2's
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2�s complement negates the number

This is
the only
exception

decimal b3 b2 b1 b0 take the 2's
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2�s complement negates the number

And this
one too.

–
1 0 1 1
1 0 0 0– +

1 0 0 1 1

1 0 1 1
1 0 0 08–()

5–()

3+ ()

ignore

But that exception does not matter

But that exception does not matter

Add 8

Subtract 8

But that exception does not matter

Take-Home Message

• Subtraction can be performed by simply adding the
2’s complement of the second number, regardless of
the signs of the two numbers.

• Thus, the same adder circuit can be used to perform
both addition and subtraction !!!

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Adder/subtractor unit

XOR Tricks

y

control
out

y

0
y

XOR as a repeater

y

1
y

XOR as an inverter

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

0

000

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

0

000

yn-1 y1 y0…

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the
first column!

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

[Figure 3.13 from the textbook]

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Overflow occurs only in these two cases.

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

XOR

Calculating overflow for 4-bit numbers
with only three significant bits

Calculating overflow for n-bit numbers
with only n-1 significant bits

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow

-

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow
(with one extra XOR)

overflow

-

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

In 2's complement, both +9 and -9 are not representable with 4 bits.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3

Questions?

THE END

