
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Fast Adders

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

• No HW is due next Monday

• HW 6 will be due on Monday Oct. 5.

Administrative Stuff

• Labs next week

• Mini-Project

• This is worth 4% of your grade (x2 labs)

• https://www.ece.iastate.edu/~alexs/classes/

2020_Fall_281/labs/Mini_Project/ /

Quick Review

The problems in which row are easier to calculate?

82
64-
??

48
29-
??

32
13-
??

82
61-
??

48
26-
??

32
11-
??

The problems in which row are easier to calculate?

82
64-
18

48
29-
19

32
13-
19

82
61-
21

48
26-
22

32
11-
21

Why?

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

= 82 + (99 + 1 – 64) - 100

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

= 82 + (99 + 1 – 64) - 100

= 82 + (99 – 64) +1 - 100

Another Way to Do Subtraction

82 – 64 = 82 + 100 – 100 - 64

= 82 + (100 – 64) - 100

= 82 + (99 + 1 – 64) - 100

= 82 + (99 – 64) +1 - 100
Does not require borrows

9’s Complement
(subtract each digit from 9)

99
64-
35

10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64-
35 + 1 = 36

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100
9’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

9’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

9’s complement

10’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

9’s complement

= 82 + 36 - 100

10’s complement

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

= 118 - 100

9’s complement

= 82 + 36 - 100

10’s complement

// Add the first two.

Another Way to Do Subtraction

82 – 64 = 82 + (99 – 64) +1 - 100

= 82 + 35 + 1 - 100

= 118 - 100

9’s complement

= 82 + 36 - 100

= 18

10’s complement

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.

1’s Complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1�s complement representation K is obtained by
subtracting P from 2n – 1, namely

K = (2n – 1) – P

This means that K can be obtained by inverting all bits of P.

1�s complement
(subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1�s complement representation K is obtained by
subtracting P from 28 – 1, namely

K = (28 – 1) – P = 255 - P

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most
significant bit must be zero to indicate that it is positive.

1�s complement
(subtract each digit from 1)

1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

Circuit for negating a number stored in
1’s complement representation

y7

y7
_

y6

y6
_

y5

y5
_

y4

y4
_

y3

y3
_

y2

y2
_

y1

y1
_

y0

y0
_

Circuit for negating a number stored in
1’s complement representation

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

2’s Complement

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2�s complement representation K is obtained by
subtracting P from 2n , namely

K = 2n – P

2�s complement

For a positive n-bit number P, let K1 and K2 denote its 1�s
and 2�s complements, respectively.

K1 = (2n – 1) – P

K2 = 2n – P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s
complement can computed by inverting all bits of P and then
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement

For a positive 8-bit number P, let K1 and K2 denote its 1�s
and 2�s complements, respectively.

K1 = (2n – 1) – P = 255 - P

K2 = 2n – P = 256 - P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s
complement can computed by inverting all bits of P and then
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0

1 0 1 1 1 0 0 0

1 1 0 1

Invert all bits.

Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0
1

1 0 1 1
+

1 0 1 1
1

1 1 0 0
+

1 0 0 0
1

1 0 0 1
+

1 1 0 1
1

1 1 1 0
+

Then add 1.

Circuit for negating a number stored in
2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0

Circuit for negating a number stored in
2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0

Addition of two numbers stored
in 2’s complement representation

There are four cases to consider

• (+5) + (+2)

• (-5) + (+2)

• (+5) + (-2)

• (-5) + (-2)

There are four cases to consider

• (+5) + (+2) positive plus positive

• (-5) + (+2) negative plus positive

• (+5) + (-2) positive plus negative

• (-5) + (-2) negative plus negative

Positive plus positive

[Figure 3.9 from the textbook]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+()
2+()

7+()

+

Negative plus positive

+

1 1 0 1

1 0 1 1
0 0 1 02+()

5–()

3–()

+

[Figure 3.9 from the textbook]

Positive plus negative

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+()

3+()

+ 2–()

[Figure 3.9 from the textbook]

Negative plus negative

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–()

7–()

+ 2–()

[Figure 3.9 from the textbook]

Subtraction of two numbers stored
in 2’s complement representation

There are four cases to consider

• (+5) - (+2)

• (-5) - (+2)

• (+5) - (-2)

• (-5) - (-2)

There are four cases to consider

• (+5) - (+2) positive minus positive

• (-5) - (+2) negative minus positive

• (+5) - (-2) positive minus negative

• (-5) - (-2) negative minus negative

There are four cases to consider

• (+5) - (+2)

• (-5) - (+2)

• (+5) - (-2)

• (-5) - (-2)

There are four cases to consider

• (+5) - (+2) = (+5) + (-2)

• (-5) - (+2) = (-5) + (-2)

• (+5) - (-2) = (+5) + (+2)

• (-5) - (-2) = (-5) + (+2)

There are four cases to consider

• (+5) - (+2) = (+5) + (-2)

• (-5) - (+2) = (-5) + (-2)

• (+5) - (-2) = (+5) + (+2)

• (-5) - (-2) = (-5) + (+2)

We can change subtraction into addition ...

There are four cases to consider

• (+5) - (+2) = (+5) + (-2)

• (-5) - (+2) = (-5) + (-2)

• (+5) - (-2) = (+5) + (+2)

• (-5) - (-2) = (-5) + (+2)

… if we negate the second number.

There are four cases to consider

• (+5) - (+2) = (+5) + (-2)

• (-5) - (+2) = (-5) + (-2)

• (+5) - (-2) = (+5) + (+2)

• (-5) - (-2) = (-5) + (+2)

There are the four addition cases
(arranged in a shuffled order)

Positive minus positive

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

[Figure 3.10 from the textbook]

Convert to: Positive plus negative

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

5+()
2–()

3+()

+

Convert to: Positive plus negative

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[Figure 3.10 from the textbook]

5+()
2–()

3+()

+

[Figure 3.11 from the textbook]

Graphical interpretation of four-bit
2’s complement numbers

Negative minus positive

[Figure 3.10 from the textbook]

–
1 0 1 1
0 0 1 0–

5–()

7–()

2+()

Convert to: Negative plus negative

[Figure 3.10 from the textbook]

–
1 0 1 1
0 0 1 0

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0–

5–()

7–()

2+() +
5–()

7–()

2–()

Positive minus negative

–
0 1 0 1
1 1 1 0

5+()

7+()

– 2–()

[Figure 3.10 from the textbook]

Convert to: Positive plus positive

–
0 1 0 1
1 1 1 0 +

0 1 1 1

0 1 0 1
0 0 1 0

5+()

7+()

– 2–()

[Figure 3.10 from the textbook]

5+()

7+()

+ 2+ ()

Negative minus negatie

–
1 0 1 1
1 1 1 0– 2–()

5–()

3–()

[Figure 3.10 from the textbook]

Convert to: Negative plus positive

–
1 0 1 1
1 1 1 0 +

1 1 0 1

1 0 1 1
0 0 1 0– 2–()

5–()

3–()

[Figure 3.10 from the textbook]

+ 2+()
5–()

3–()

Take Home Message

• Subtraction can be performed by simply negating
the second number and adding it to the first,
regardless of the signs of the two numbers.

• Thus, the same adder circuit can be used to perform
both addition and subtraction !!!

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Adder/subtractor unit

XOR Tricks

y

control
out

y

0
y

XOR as a repeater

y y

XOR as a repeater

y

1
y

XOR as an inverter

y

XOR as an inverter

y

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

0

000

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Addition: when control = 0

0

000

yn-1 y1 y0…

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0

Add ⁄ Sub
control

[Figure 3.12 from the textbook]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the
first column!

Overflow Detection

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

[Figure 3.13 from the textbook]

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

[Figure 3.13 from the textbook]

In 2's complement, both +9 and -9 are not representable with 4 bits.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits: c4 c3 c2 c1 c0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Overflow occurs only in these two cases.

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

XOR

Calculating overflow for 4-bit numbers
with only three significant bits

Calculating overflow for n-bit numbers
with only n-1 significant bits

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow

-

FA

x n – 1

c n c n 1 -

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

Detecting Overflow
(with one extra XOR)

overflow

Overflow Detection
(alternative method)

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

In 2's complement, both +9 and -9 are not representable with 4 bits.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3

X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If both numbers that we are adding have the same sign
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3

A ripple-carry adder

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

How long does it take to compute all
sum bits and all carry bits?

–

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

Delays through the modular
implementation of the full-adder circuit

[Figure 3.4 from the textbook]

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

Delays through the modular
implementation of the full-adder circuit

[Figure 3.4 from the textbook]

2 gate delays through this route

HA
HAs

c

s
c

c i
x i
y i

c i 1 +

s i

c i

x i
y i

c i 1 +

s i

(a) Block diagram

(b) Detailed diagram

Delays through the modular
implementation of the full-adder circuit

[Figure 3.4 from the textbook]

3 gate delays in total

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

How long does it take to compute all
sum bits and all carry bits in this case?

–

It takes 3n gate delays?

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

1 gate delay through this route

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

2 gate delays in total

FA

x n – 1

c n c n 1

y n 1 –

s n 1 –

FA

x 1

c 2

y 1

s 1

FA
c 1

x 0 y 0

s 0

c 0

How long does it take to compute all
sum bits and all carry bits?

–

It takes 2n gate delays?

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the
previous stage will be equal to 0 or 1.

To accomplish this goal we will have to redesign the
full-adder circuit yet again.

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

[Figure 3.3c from the textbook]

Let's take a closer look at this.

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

Decomposing the Carry Expression

yi

xi
ci+1

ci

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

Another Way to Draw the Full-Adder Circuit

yi

xi

ci

ci+1

si

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci

yi

xi

ci

ci+1

si

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci
gi pi

yi

xi

ci

ci+1

si

Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi)ci
gi pi

g - generate p - propagate

yi

xi

ci

ci+1

si

gi

pi

Yet Another Way to Draw It (Just Rotate It)

ci

ci+1 si

xi yi

pigi

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

Now we can Build a Ripple-Carry Adder

[Figure 3.14 from the textbook]

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

2-bit ripple-carry adder: 5 gate delays (1+2+2)

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

n-bit ripple-carry adder: 2n+1 gate delays

. . .

n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

…

• +2 more gate delay to generate carry n

• Thus, the total delay through an
n-bit ripple-carry adder is 2n+1 gate delays!

n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

…

• +2 more gate delay to generate carry n

• Thus, the total delay through an
n-bit ripple-carry adder is 2n+1 gate delays!

This is slower by 1 than the original design?!

A carry-lookahead adder

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci
gi pi

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci
gi pi

(1 gate delay) (1 gate delay)

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

It takes 1 gate delay to compute all pi signals

[Figure 3.14 from the textbook]

x 1 y 1

g 1 p 1

s 1

Stage 1

x 0 y 0

g 0 p 0

s 0

Stage 0

c 0
c 1 c 2

It takes 1 gate delay to compute all gi signals

[Figure 3.14 from the textbook]

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci
gi pi

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci
gi pi

ci+1 = gi + pi ci

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci
gi pi

ci+1 = gi + pi ci

ci+1 = gi + pi (gi-1 + pi-1 ci-1)
ci

recursive
expansion of

Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi)ci
gi pi

ci+1 = gi + pi ci

ci+1 = gi + pi (gi-1 + pi-1 ci-1)

ci+1 = gi + pi gi-1 + pi pi-1 ci-1

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

[Figure 3.15 from the textbook]

Now we can Build a Carry-Lookahead Adder

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

. . .
Stage 0Stage 1

c1 = g0 + p0 c0

Carry for the first stage

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

c1 = g0 + p0 c0

Carry for the first stage

Carry for the second stage

c2 = g1 + p1g0 + p1p0c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

c2 = g1 + p1g0 + p1p0c0

Carry for the second stage

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

= g1 + p1 (g0 + p0c0)
c1

Carry for the first two stages

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

= g1 + p1 (g0 + p0c0)

= g1 + p1 c1
c1

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

It takes 3 gate delays to generate c1

c1 = g0 + p0 c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

It takes 3 gate delays to generate c2

c2 = g1 + p1g0 + p1p0c0

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

x 0 y 0

c 0

c 1

g 0 p 0

The first two stages of a carry-lookahead adder

2 c

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

x 0 y 0

c 0

c 1

g 0 p 0

It takes 4 gate delays to generate s1

2 c

It takes 4 gate delays to generate s2

x 1 y 1

g 1 p 1

s 1

x 0 y 0

s 0

c 2

x 0 y 0

c 0

c 1

g 0 p 0

s 2

N-bit Carry-Lookahead Adder
• It takes 1 gate delay to generate all gi and pi signals

• It takes 2 more gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an
n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

ci+1 = gi + pi ci

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

. . .

Expanding the Carry Expression

c1 = g0 + p0 c0

c2 = g1 + p1g0 + p1p0c0

ci+1 = gi + pi ci

c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

. . .

Even this takes
only 3 gate delays

A hierarchical carry-lookahead adder
with ripple-carry between blocks

Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block
1

Block
0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2

Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block
1

Block
0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

x23 16– y23 16–

s23 16–

A hierarchical carry-lookahead adder

Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with
ripple-carry between blocks

[Figure 3.16 from the textbook]

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

A hierarchical carry-lookahead adder

c 32

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

A hierarchical carry-lookahead adder

c 32

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

A hierarchical carry-lookahead adder

? ? ?

c 32

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

G0

P0

The Hierarchical Carry Expression

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

G0

P0

c8 = G0 + P0 c0

The Hierarchical Carry Expression

c8 = G0 + P0 c0

c16 = G1 + P1 c8
= G1 + P1 G0 + P1 P0 c0

c24 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

Block

x 15 8 – y 15 8 – x 7 0 – y 7 0 –

3
Block

1
Block

0

Second-level lookahead

c 0

s 7 0 –

P 0 G 0 P 1 G 1 P 3 G 3

s 15 8 –s 31 24–

c 8 c 16c 32

x 31 24– y 31 24–

c 24

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

c8 = G0 + P0 c0c16 = G1 + P1 G0 + P1 P0 c0c32 =G3+P3G2+P3P2G1 +P3 P2 P1 G0+P3 P2 P1 P0 c0

Total Gate Delay Through a
Hierarchical Carry-Lookahead Adder

• The total delay is 8 gates:

§ 3 to generate all Gj and Pj signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR)

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical
CLA Adder
Carry Logic

C8 – 5 gate delays
C16 – 5 gate delays
C24 – 5 Gate delays
C32 – 5 Gate delays

g 7
p 7 g 6

x 7 y 7 x
6 y 6

p 7
p 6

g 5

p 7
p 6

p 5
g 4

p 7
g 6

p 7
p 6

p 5
p 4

g 3
p 7

p 6
p 5

p 4
p 3

g 2
p 7

p 6
p 5

p 4
p 3

p 2
g 1

p 7
p 6

p 5
p 4

p 3
p 2

p 1
g 0

G
0 P

0
c 0

c 0P
0

c 8

Block 1

G
0

c 0P
0

Block 2

c 1
6

P
1

P
1
P

0
c 0

P
1

P
1
G

0

G
1

SECOND
LEVEL

HIERARCHY

p9

g9

c9

Block 2

p17

g17

c17

Block 3

p0

g0

c1

Block 1

c0

FIRST LEVEL HIERARCHY

Hierarchical
CLA

Critical Path

C9 – 7 gate delays
C17 – 7 gate delays
C25 – 7 Gate delays

Questions?

THE END

