
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281: 
Digital Logic



Fast Adders

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev



Administrative Stuff

• No HW is due next Monday

• HW 6 will be due on Monday Oct.  5.



Administrative Stuff

• Labs next week

• Mini-Project

• This is worth 4% of your grade (x2 labs)

• https://www.ece.iastate.edu/~alexs/classes/

2020_Fall_281/labs/Mini_Project/ /



Quick Review



The problems in which row are easier to calculate?

82
64-
??

48
29-
??

32
13-
??

82
61-
??

48
26-
??

32
11-
??



The problems in which row are easier to calculate?

82
64-
18

48
29-
19

32
13-
19

82
61-
21

48
26-
22

32
11-
21

Why?



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  

=  82 + (99 – 64) +1 - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  

=  82 + (99 – 64) +1 - 100  
Does not require borrows



9’s Complement
(subtract each digit from 9)

99
64-
35



10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64-
35 + 1 = 36



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    
9’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement

10’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement

=  82 + 36 - 100  

10’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

10’s complement

// Add the first two.



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

=    18

10’s complement

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.



1’s Complement



Let K be the negative equivalent of an n-bit positive number P.

Then, in 1�s complement representation K is obtained by 
subtracting P from 2n – 1, namely

K = (2n – 1) – P

This means that K can be obtained by inverting all bits of P.

1�s complement
(subtract each digit from 1)



Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1�s complement representation K is obtained by 
subtracting P from 28 – 1, namely

K = (28 – 1) – P = 255 - P

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most 
significant bit must be zero to indicate that it is positive.

1�s complement
(subtract each digit from 1)



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1�s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_



Circuit for negating a number stored in 
1’s complement representation

y7

y7
_

y6

y6
_

y5

y5
_

y4

y4
_

y3

y3
_

y2

y2
_

y1

y1
_

y0

y0
_



Circuit for negating a number stored in 
1’s complement representation

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1



2’s Complement



Let K be the negative equivalent of an n-bit positive number P.

Then, in 2�s complement representation K is obtained by 
subtracting P from 2n , namely

K = 2n – P

2�s complement



For a positive n-bit number P, let K1 and K2 denote its 1�s 
and 2�s complements, respectively.

K1 = (2n – 1) – P

K2 = 2n – P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s 
complement can computed by inverting all bits of P and then 
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement



For a positive 8-bit number P, let K1 and K2 denote its 1�s 
and 2�s complements, respectively.

K1 = (2n – 1) – P = 255 - P

K2 = 2n – P = 256 - P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2�s 
complement can computed by inverting all bits of P and then 
adding 1 to the resulting 1�s-complement number.

Deriving 2�s complement



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0

1 0 1 1 1 0 0 0

1 1 0 1

Invert all bits.



Find the 2�s complement of …

0 1 0 1 0 0 1 0

0 1 1 10 1 0 0

1 0 1 0
1

1 0 1 1
+

1 0 1 1
1

1 1 0 0
+

1 0 0 0
1

1 0 0 1
+

1 1 0 1
1

1 1 1 0
+

Then add 1.



Circuit for negating a number stored in  
2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0



Circuit for negating a number stored in  
2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0



Addition of two numbers stored 
in 2’s complement representation



There are four cases to consider

• (+5)  +  (+2)

• (-5)  +  (+2)

• (+5)  +  (-2)

• (-5)  +  (-2)



There are four cases to consider

• (+5)  +  (+2) positive plus positive

• (-5)  +  (+2) negative plus positive

• (+5)  +  (-2) positive plus negative

• (-5)  +  (-2) negative plus negative



Positive plus positive

[ Figure 3.9 from the textbook ]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )

7+( )

+



Negative plus positive

+

1 1 0 1

1 0 1 1
0 0 1 02+( )

5–( )

3–( )

+

[ Figure 3.9 from the textbook ]



Positive plus negative

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+( )

3+( )

+ 2–( )

[ Figure 3.9 from the textbook ]



Negative plus negative

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–( )

7–( )

+ 2–( )

[ Figure 3.9 from the textbook ]



Subtraction of two numbers stored 
in 2’s complement representation



There are four cases to consider

• (+5)  - (+2)

• (-5)  - (+2)

• (+5)  - (-2)

• (-5)  - (-2)



There are four cases to consider

• (+5)  - (+2) positive minus positive

• (-5)  - (+2) negative minus positive

• (+5)  - (-2) positive minus negative

• (-5)  - (-2) negative minus negative



There are four cases to consider

• (+5)  - (+2)

• (-5)  - (+2)

• (+5)  - (-2)

• (-5)  - (-2)



There are four cases to consider

• (+5)  - (+2) =    (+5)  +  (-2)

• (-5)  - (+2) =    (-5)  +  (-2)

• (+5)  - (-2) =    (+5)  +  (+2)

• (-5)  - (-2)    =    (-5)  +  (+2)



There are four cases to consider

• (+5)  - (+2) =    (+5)  + (-2)

• (-5)  - (+2) =    (-5)  + (-2)

• (+5)  - (-2) =    (+5)  + (+2)

• (-5)  - (-2)    =    (-5)  + (+2)

We can change subtraction into addition ...



There are four cases to consider

• (+5)  - (+2) =    (+5)  +  (-2)

• (-5)  - (+2) =    (-5)  +  (-2)

• (+5)  - (-2) =    (+5)  +  (+2)

• (-5)  - (-2)    =    (-5)  +  (+2)

… if we negate the second number.



There are four cases to consider

• (+5)  - (+2) =    (+5)  +  (-2)

• (-5)  - (+2) =    (-5)  +  (-2)

• (+5)  - (-2) =    (+5)  +  (+2)

• (-5)  - (-2)    =    (-5)  +  (+2)

There are the four addition cases
(arranged in a shuffled order)



Positive minus positive

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

[ Figure 3.10 from the textbook ]



Convert to: Positive plus negative

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

5+( )
2–( )

3+( )

+



Convert to: Positive plus negative

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

5+( )
2–( )

3+( )

+



[ Figure 3.11 from the textbook ]

Graphical interpretation of four-bit 
2’s complement numbers



Negative minus positive

[ Figure 3.10 from the textbook ]

–
1 0 1 1
0 0 1 0–

5–( )

7–( )

2+( )



Convert to: Negative plus negative

[ Figure 3.10 from the textbook ]

–
1 0 1 1
0 0 1 0

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0–

5–( )

7–( )

2+( ) +
5–( )

7–( )

2–( )





Positive minus negative

–
0 1 0 1
1 1 1 0

5+( )

7+( )

– 2–( )

[ Figure 3.10 from the textbook ]



Convert to: Positive plus positive

–
0 1 0 1
1 1 1 0 +

0 1 1 1

0 1 0 1
0 0 1 0

5+( )

7+( )

– 2–( )

[ Figure 3.10 from the textbook ]

5+( )

7+( )

+ 2+ ( )





Negative minus negatie

–
1 0 1 1
1 1 1 0– 2–( )

5–( )

3–( )

[ Figure 3.10 from the textbook ]



Convert to: Negative plus positive

–
1 0 1 1
1 1 1 0 +

1 1 0 1

1 0 1 1
0 0 1 0– 2–( )

5–( )

3–( )

[ Figure 3.10 from the textbook ]

+ 2+( )
5–( )

3–( )



Take Home Message

• Subtraction can be performed by simply negating  
the second number and adding it to the first, 
regardless of the signs of the two numbers.

• Thus, the same adder circuit can be used to perform 
both addition and subtraction !!!



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Adder/subtractor unit



XOR Tricks

y

control
out



y

0
y

XOR as a repeater



y y

XOR as a repeater



y

1
y

XOR as an inverter



y

XOR as an inverter

y



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0

0

000



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0

0

000

yn-1 y1 y0…



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111

yn-1 y1 y0…



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the 
first column!



Overflow Detection



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow

[ Figure 3.13 from the textbook ]



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow

[ Figure 3.13 from the textbook ]

In 2's complement, both +9 and -9 are not representable with 4 bits.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Overflow occurs only in these two cases.

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

XOR



Calculating overflow for 4-bit numbers 
with only three significant bits



Calculating overflow for n-bit numbers 
with only n-1 significant bits



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow

-



FA

x n – 1 

c n c n 1 -

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow



Overflow Detection
(alternative method)



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

In 2's complement, both +9 and -9 are not representable with 4 bits.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3



A ripple-carry adder



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

How long does it take to compute all 
sum bits and all carry bits?

–



HA
HAs 

c 

s 
c 

c i 
x i 
y i 

c i 1 + 

s i 

c i 

x i 
y i 

c i 1 + 

s i 

(a) Block diagram 

(b) Detailed diagram

Delays through the modular 
implementation of the full-adder circuit

[ Figure 3.4 from the textbook ]
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2 gate delays through this route
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3 gate delays in total
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How long does it take to compute all 
sum bits and all carry bits in this case?

–

It takes 3n gate delays? 



Delays through the Full-Adder circuit

[ Figure 3.3c from the textbook ]
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1 gate delay through this route



Delays through the Full-Adder circuit
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2 gate delays in total
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How long does it take to compute all 
sum bits and all carry bits?

–

It takes 2n gate delays? 



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the 
previous stage will be equal to 0 or 1.



Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the 
previous stage will be equal to 0 or 1.

To accomplish this goal we will have to redesign the 
full-adder circuit yet again.



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]



The Full-Adder Circuit

[ Figure 3.3c from the textbook ]

Let's take a closer look at this.



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci
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Another Way to Draw the Full-Adder Circuit

ci+1 = xi yi + (xi + yi )ci
gi pi
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Yet Another Way to Draw It (Just Rotate It)
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[ Figure 3.14 from the textbook ]
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2-bit ripple-carry adder: 5 gate delays (1+2+2)
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n-bit ripple-carry adder: 2n+1 gate delays

. . . 



n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

…

• +2 more gate delay to generate carry n

• Thus, the total delay through an 
n-bit ripple-carry adder is 2n+1 gate delays!



n-bit Ripple-Carry Adder

• It takes 1 gate delay to generate all gi and pi signals

• +2 more gate delays to generate carry 1

• +2 more gate delay to generate carry 2

…

• +2 more gate delay to generate carry n

• Thus, the total delay through an 
n-bit ripple-carry adder is 2n+1 gate delays!

This is slower by 1 than the original design?!



A carry-lookahead adder
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Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci
gi pi

(1 gate delay) (1 gate delay)
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It takes 1 gate delay to compute all pi signals

[ Figure 3.14 from the textbook ]
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It takes 1 gate delay to compute all gi signals

[ Figure 3.14 from the textbook ]
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Decomposing the Carry Expression
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Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci
gi pi

ci+1 = gi + pi ci

ci+1 = gi + pi (gi-1 + pi-1 ci-1 )
ci

recursive 
expansion of



Decomposing the Carry Expression

ci+1 = xi yi + xi ci + yi ci

ci+1 = xi yi + (xi + yi )ci
gi pi

ci+1 = gi + pi ci

ci+1 = gi + pi (gi-1 + pi-1 ci-1 )

ci+1 = gi + pi gi-1 + pi pi-1 ci-1
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Now we can Build a Carry-Lookahead Adder
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The first two stages of a carry-lookahead adder

[ Figure 3.15 from the textbook ]

. . . 
Stage 0Stage 1



c1  =  g0 + p0 c0

Carry for the first stage
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Carry for the second stage

c2  =  g1 + p1g0 + p1p0c0
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It takes 3 gate delays to generate c1

c1  =  g0 + p0 c0
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It takes 3 gate delays to generate c2

c2  =  g1 + p1g0 + p1p0c0
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It takes 4 gate delays to generate s2
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N-bit Carry-Lookahead Adder
• It takes 1 gate delay to generate all gi and pi signals

• It takes 2 more gate delays to generate all carry signals

• It takes 1 more gate delay to generate all sum bits

• Thus, the total delay through an 
n-bit carry-lookahead adder is only 4 gate delays!



Expanding the Carry Expression

c1  =  g0 + p0 c0

c2  =  g1 + p1g0 + p1p0c0

ci+1 = gi + pi ci
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+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

. . .



Expanding the Carry Expression

c1  =  g0 + p0 c0

c2  =  g1 + p1g0 + p1p0c0

ci+1 = gi + pi ci

c3  =  g2 + p2g1 + p2p1g0 + p2p1p0c0

c8  =  g7 + p7g6 + p7p6g5 + p7p6p5g4
+ p7p6p5p4g3 + p7p6p5p4p3g2
+ p7p6p5p4p3p2g1+ p7p6p5p4p3p2p1g0
+ p7p6p5p4p3p2p1p0c0

. . .

Even this takes 
only 3 gate delays 



A hierarchical carry-lookahead adder 
with ripple-carry between blocks



Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block
1

Block
0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2



Block

x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block
1

Block
0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–

s23 16–

Block
2



x31 24–

c32
c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

x23 16– y23 16–

s23 16–



A hierarchical carry-lookahead adder



Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

A hierarchical carry-lookahead adder with 
ripple-carry between blocks

[ Figure 3.16 from the textbook ]
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A hierarchical carry-lookahead adder
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The Hierarchical Carry Expression
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The Hierarchical Carry Expression

c8  =  G0 + P0 c0

c16  =  G1 + P1 c8
=  G1 + P1 G0 + P1 P0 c0

c24  = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

c32  = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0+ P3 P2 P1 P0 c0
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A hierarchical carry-lookahead adder
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A hierarchical carry-lookahead adder

c8  =  G0 + P0 c0c16  = G1 + P1 G0 + P1 P0 c0c32 =G3+P3G2+P3P2G1 +P3 P2 P1 G0+P3 P2 P1 P0 c0



Total Gate Delay Through a 
Hierarchical Carry-Lookahead Adder 

• The total delay is 8 gates:

§ 3 to generate all Gj and Pj signals

§ +2 to generate c8, c16, c24, and c32

§ +2 to generate internal carries in the blocks

§ +1 to generate the sum bits (one extra XOR) 
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Questions?



THE END


