P1 (15 points): Produce the simplified sum-of-products (SOP) expressions for the following K-maps:

F_{1}				
${ }_{C}{ }^{\text {AB }}$	00	01	11	10
0	0	1	1	0
1	0	1	1	0

F_{2}				
wz	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	1	1	1	1
10	0	0	0	0

F3				
vz ${ }^{\text {w }}$	00	01	11	10
00	1	0	0	1
01	1	1	0	0
11	0	0	0	1
10	0	0	0	0

P2 (15 points): For each shorthand expression below, derive the simplest SOP expression:
a. $G_{1}(w, x, y, z)=\sum m(1,3,4,5,6,7,12,13,15)$
b. $G_{2}(x, y, z)=\sum m(0,1,2,6)$
c. $G_{3}(w, x, y, z)=\sum m(0,1,3,8,15)$

P3. (20 points) A four-variable function that is equal to 1 if any three or all four of its variables are equal to 1 is called a majority function.
a. Write the truth table for the majority function.
b. Use a K-map to derive the simplest SOP expression for this majority function.
c. Use a K-map to derive the simplest POS expression for this majority function.
d. Compare the costs of the circuits implementing the expressions in part(b) and part(c) in terms of the total number of gates plus the total number of inputs.

P4 (15 points): For each expression below, derive the simplest POS expression:
a. $H_{1}(a, b, c, d)=\Pi M(0,2,5,7,8,10,13,15)$
b. $H_{2}(a, b, c)=\prod M(2,3,6,7)$
c. $H_{3}(a, b, c, d)=\Pi M(0,4,5,7,8,11,12)$

P5 (20 points): For the following truth table find the following:

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(a) Use a K-map to derive the simplest SOP expression for this majority function.
(b) Use a K-map to derive the simplest POS expression for this majority function.
(c) Compare the costs of the circuits implementing the expressions in part (a) and
part (b) in terms of the total number of gates plus the total number of inputs.

P6 (15 points): Use Karnaugh Maps to convert the following expressions to simplified SOP expressions:
I: $Q_{1}(A, B, C, D)=\bar{A} \bar{C} D+\bar{A} B \bar{C}+B D+A \bar{C} D+A \bar{B} C$
II: $Q_{2}(A, B, C, D)=\Pi M(5,13)$
III: $Q_{3}(A, B, C, D)=(B+\bar{C}+D)(A+C+D)(\bar{B}+\bar{C}+D)$

