Cpr E 281 HW05 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY Minimization and Karnaugh Maps Assigned Date: Fifth Week Due Date: Monday, Sep. 27, 2021

P1. (20 points) Use a K-map to find the minimal sum-of-products (SOP) expression for the following four problems. Show the terms that are grouped in each K-map.

- a) (5 points) BC A b) (5 points) CD AB
- c) (5 points) $F(A, B, C) = \sum m(1, 2, 3, 5, 7)$
- d) (5 points) $F(A, B, C, D) = \sum m(1, 3, 4, 5, 6, 7, 9, 11, 13, 15)$

P2. (15 points) Use a K-map to find the minimal product-of-sums (POS) expression for the following three problems. Show the terms that are grouped in each K-map.

a) (5 points)

BC								
А	\backslash	00	01	11	10			
	0	0	0	0	1			
	1	1	0	0	1			

b) (5 points)

AB	\backslash	00	01	11	10		
	00	1	0	0	1		
	01	0	1	1	0		
	11	0	1	1	0		
	10	1	0	0	1		

c) (5 points) $F(A, B, C, D) = \prod M(5, 7, 11, 13, 15)$

Cpr E 281 HW05 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY Minimization and Karnaugh Maps Assigned Date: Fifth Week Due Date: Monday, Sep. 27, 2021

P3. (4x5=20 points) You stumble across an old manuscript containing the following page, but some ink stains are obscuring part of the content. Deduce the function F(A,B,C) and write: a) the complete K-map; b) the complete truth table; c) the minimized POS expression; and d) the minimized SOP circuit diagram. Explain your reasoning.

P4. (10 points) Use a K-map to derive the minimal SOP expressions for the following Boolean function:

F(A, B, C, D) = ACD' + C'D + AB' + ABCD

P5. (15 points) Design a circuit that accepts a 4-bit number $X = x_3 x_2 x_1 x_0$ as input and generates a 1-bit output *P* that is equal to 1 if the input number is a prime. (0 and 1 are not prime; 2, 3, 5, etc., are prime.)

- a) (7 points) Write down the truth table for the output *P*.
- b) (8 points) Derive the simplest SOP expressions for the output *P*.

P6. (20 points) Design a circuit that accepts a 3-bit number $X = x_2 x_1 x_0$ as input and generates a 6-bit number $Y = y_5 y_4 y_3 y_2 y_1 y_0$ as output, which is equal to the square of the input number (i.e., $Y = X^2$).

- a) (10 points) Write down the truth table for the six output lines $y_5y_4y_3y_2y_1y_0$ that jointly represent the number Y in binary.
- b) (10 points) Derive the simplest SOP expressions for each bit of the output. That is, derive six expressions: one for y₅, another for y₄, and so on.