Minimization and Karnaugh Maps
 Assigned Date: Fifth Week
 Due Date: Monday, Sep. 27, 2021

P1. (20 points) Use a K-map to find the minimal sum-of-products (SOP) expression for the following four problems. Show the terms that are grouped in each K-map.
a) (5 points)

$$
\begin{aligned}
& B C \\
&
\end{aligned}
$$

b) (5 points)

CD				
AB	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	0	0	0
10	1	0	0	1

c) (5 points) $F(A, B, C)=\sum m(1,2,3,5,7)$
d) (5 points) $F(A, B, C, D)=\sum m(1,3,4,5,6,7,9,11,13,15)$

P2. (15 points) Use a K-map to find the minimal product-of-sums (POS) expression for the following three problems. Show the terms that are grouped in each K-map.
a) (5 points)

BC				
A	00	01	11	10
0	0	0	0	1
1	1	0	0	1

b) (5 points)

CD				
AB	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	1	1	0
10	1	0	0	1

c) (5 points) $\quad F(A, B, C, D)=\prod M(5,7,11,13,15)$

Cpr E 281 HW05
 ELECTRICAL AND COMPUTER ENGINEERING
 IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps
 Assigned Date: Fifth Week
 Due Date: Monday, Sep. 27, 2021

P3. (4x5=20 points) You stumble across an old manuscript containing the following page, but some ink stains are obscuring part of the content. Deduce the function $F(A, B, C)$ and write: a) the complete K-map; b) the complete truth table; c) the minimized POS expression; and d) the minimized SOP circuit diagram. Explain your reasoning.

P4. (10 points) Use a K-map to derive the minimal SOP expressions for the following Boolean function:

$$
F(A, B, C, D)=A C D^{\prime}+C^{\prime} D+A B^{\prime}+A B C D
$$

P5. (15 points) Design a circuit that accepts a 4-bit number $\mathrm{X}=x_{3} x_{2} x_{1} x_{0}$ as input and generates a 1-bit output P that is equal to 1 if the input number is a prime. (0 and 1 are not prime; $2,3,5$, etc., are prime.)
a) (7 points) Write down the truth table for the output P.
b) (8 points) Derive the simplest SOP expressions for the output P.

P6. (20 points) Design a circuit that accepts a 3-bit number $\mathrm{X}=x_{2} x_{1} x_{0}$ as input and generates a 6-bit number $\mathrm{Y}=y_{5} y_{4} y_{3} y_{2} y_{1} y_{0}$ as output, which is equal to the square of the input number (i.e., $\mathrm{Y}=\mathrm{X}^{2}$).
a) (10 points) Write down the truth table for the six output lines $y_{5} y_{4} y_{3} y_{2} y_{1} y_{0}$ that jointly represent the number Y in binary.
b) (10 points) Derive the simplest SOP expressions for each bit of the output. That is, derive six expressions: one for y_{5}, another for y_{4}, and so on.

