Multiplexers, Decoders, and Encoders

Assigned Date: eighth Week
Finish by Oct. 18, 2021

P1 (5 points). Write the POS expression for the 2-to-1 MUX
P2 (20 points). Consider construing a $2^{\text {n }}$-to- 1 multiplexer using only 2 -to- 1 multiplexers, with n being a positive integer:
a. How many 2-to-1 multiplexers would a 2^{n}-to-1 multiplexer require? (Give the answer in terms of n)
b. Design an 8-to-1 multiplexer using a minimal number of 2-to-1 multiplexers. Label all signals clearly.

P3 (10points). Answer the following questions about decoders and MUXes:
a. How many 2-to-4 decoders are necessary to create a 4 -to- 16 decoder?
b. How many 3 -to- 8 decoders are necessary to create a 6 -to- 64 decoder?
c. How many 1-bit 2-to-1 MUXes are necessary to create a 1-bit 8-to-1 MUX?
d. How many 1-bit 2-to-1 MUXes are necessary to create an 8-bit 2-to-1 MUX?

P4 (20 points). Consider a function F with 4 bits of input A3, A2, A1, A0 such that the output of F is 1 if the unsigned binary number represented by A3 A2 A1A0 is prime (i.e. $2,3,5,7,11$, or 13). Otherwise, the output of F is 0 .
Write the truth table for F .
Implement F using only a 16 -to-1 MUX.
Implement F using an 8-to-1 MUX, and some AND, OR, and NOT gates. Implement F using an 4-to-1 MUX, and some AND, OR, and NOT gates.
Using Shannon's expansion, implement F using a 2-to-1 MUX, and some AND, OR, and NOT gates.

P5 (20 points). Implement the following functions using Shannon's expansion:
Implement $\mathrm{F}=\mathrm{w} 1 \mathrm{w} 2+\mathrm{w} 1 \mathrm{w} 3+\mathrm{w} 2 \mathrm{w} 3$ using only 2 -to- 1 MUXs
Implement $\mathrm{F}=\mathrm{w} 1 \mathrm{w} 2+\mathrm{w} 1 \mathrm{w} 3+\mathrm{w} 2 \mathrm{w} 3$ using only 4 -to-1 MUXs

P6 (10points). Given a supply of 1-to-2 decoders, show how to get a 3-to-8 decoder circuit. Assume each of the 1-to-2 decoders has an ENABLE input (ENABLE $=1$ enables the decoder), but you do not need to include enable capability on the 3-to-8 decoder circuit.

CprE 281 HW7
 ELECTRICAL AND COMPUTER
 ENGINEERING
 IOWA STATE UNIVERSITY
 Multiplexers, Decoders, and Encoders
 Assigned Date: eighth Week
 Finish by Oct. 18, 2021

P7. (15 points) For each of the following, assign either a 0 or a 1 to each input and output of the 5-bit adder such that it computes the given expression. In all problems, the binary numbers are stored in 2 's complement representation. The problem in a) is already solved.
a) $(+5)+(+6)=+11$
b) $(+\mathbf{1 1})+(+3)=$

c) $(-13)+(+4)=$
d) $(+14)+(-6)=$

e) $(+8)+(-12)=$

f) $(-7)-(-11)=$

