

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Binary Numbers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

This is the official class web page:
http://www.ece.iastate.edu/~alexs/classes/2021_Fall_281/

If you missed the first lecture, the syllabus and other class materials are posted there.

Administrative Stuff

- HW1 is out
- It is due on Monday Aug 30 @ 4pm.
- Submit it on Canvas before the start of the lecture

Did you get the textbook?

Administrative Stuff

The labs and recitations start next week:

- Section 11: Tuesday 2:10 PM - 5:00 PM (Coover Hall, room 2042)
- Section 8: Wednesday 7:45 AM - 10:35 AM (Coover Hall, room 2042)
- Section 18: Wednesday 11:00 AM - 1:50 PM (Coover Hall, room 2042)
- Section 15: Wednesday 6:10 PM - 9:00 PM (Coover Hall, room 2042)
- Section 22: Thursday 8:00 AM - 10:50 AM (Coover Hall, room 2042)
- Section 14: Thursday 11:00 AM - 1:50 PM (Coover Hall, room 2042)
- Section 10: Thursday 2:10 PM - 5:00 PM (Coover Hall, room 2042)
- Section 9: Thursday 5:10 PM - 8:00 PM (Coover Hall, room 2042)
- The lab schedule is also posted on the class web page

The Labs Start Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- You must answer the pre-lab questions before the start of the lab.
- The TAs will check your answers at the beginning of the lab.

The Labs Start Next Week

Figure 1.5 in the textbook: An FPGA board.

The Decimal System

What number system is this one?

[http://freedomhygiene.com/wp-content/themes/branfordmagazine/images/backgrounds/Hands_141756.jpg]

The Binary System

Number Systems

$$
N=d_{n} B^{n}+d_{n-1} B^{n-1}+\cdots+d_{1} B^{1}+d_{0} B^{0}
$$

Number Systems

n-th digit (most significant)

0-th digit
(least significant)

Number Systems

0-th digit

The Decimal System

$$
524_{10}=5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}
$$

The Decimal System

$$
\begin{aligned}
524_{10} & =5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0} \\
& =5 \times 100+2 \times 10+4 \times 1 \\
& =500+20+4 \\
& =524_{10}
\end{aligned}
$$

Another Way to Look at This

Another Way to Look at This

Another Way to Look at This

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0 .

Base 7

$$
524_{7}=5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0}
$$

Base 7

Base 7

most significant
digit
least significant digit

Base 7

$$
\begin{aligned}
524_{7} & =5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0} \\
& =5 \times 49+2 \times 7+4 \times 1 \\
& =245+14+4 \\
& =263_{10}
\end{aligned}
$$

Another Way to Look at This

Binary Numbers (Base 2)

$$
1001_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
$$

Binary Numbers (Base 2)

most significant bit
least significant bit

Binary Numbers (Base 2)

$$
\begin{aligned}
1001_{2} & =1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& =1 \times 8+0 \times 4+0 \times 2+1 \times 1= \\
& =8+0+1 \\
& =9_{10}+0+
\end{aligned}
$$

Another Example

$$
\begin{aligned}
11101_{2} & =1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& =1 \times 16+1 \times 8+1 \times 4+0 \times 2+1 \times 1= \\
& =16+8+0+1+29_{10}
\end{aligned}
$$

Powers of 2

$$
\begin{array}{ll}
2^{10} & =1024 \\
2^{9} & =512 \\
2^{8} & =256 \\
2^{7} & =128 \\
2^{6} & = \\
2^{5} & = \\
2^{5} & =32 \\
2^{4} & = \\
2^{3} & = \\
2^{2} & = \\
2^{2} & 4 \\
2^{1} & = \\
2^{0} & = \\
2
\end{array}
$$

What is the value of this binary number?

- 00101100
- 0

0
0

- $0^{*} 2^{7}+0^{*} 2^{6}+1^{*} 2^{5}+0^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+0^{*} 2^{0}$
- $0 * 128+0 * 64+1 * 32+0 * 16+1 * 8+1 * 4+0 * 2+0 * 1$
- $0 * 128+0 * 64+1^{*} 32+0 * 16+1 * 8+1 * 4+0 * 2+0 * 1$
- 32+8+4=44(in decimal)

Another Way to Look at This

Some Terminology

- A binary digit is called a bit
- A group of eight bits is called a byte
- One bit can represent only two possible states, which are denoted with 1 and 0

Relationship Between a Byte and a Bit

Relationship Between a Byte and a Bit

Relationship Between a Byte and a Bit

Bit Permutations

1 bit	2 bits		3 bits	
	bits			
0	00	000	0000	1000
1	01	001	0001	1001
	10	000	0010	1010
	11	0011	0011	1011
		100	0100	11100
		101	0101	100
		110	0110	1110
		111	0111	1111

Each additional bit doubles the number of possible permutations

Bit Permutations

- Each permutation can represent a particular item
- There are 2^{N} permutations of N bits
- Therefore, N bits are needed to represent 2^{N} unique items
How many
items can be
represented by $\begin{cases}1 \text { bit? } & 2^{1}=2 \text { items } \\ 2 \text { bits? } & 2^{2}=4 \text { items } \\ 3 \text { bits? } & 2^{3}=8 \text { items } \\ 4 \text { bits? } & 2^{4}=16 \text { items } \\ 5 \text { bits? } & 2^{5}=32 \text { items }\end{cases}$

What is the maximum number that can be stored in one byte (8 bits)?

What is the maximum number that can be stored in one byte (8 bits)?

- 11111111
- 1

$-1^{*} 2^{7}+1^{*} 2^{6}+1^{*} 2^{5}+1^{*} 2^{4}+1^{*} \mathbf{2}^{3}+1^{*} \mathbf{2}^{2}+1^{*} \mathbf{2}^{1}+1^{*} \mathbf{2}^{0}$
- $1^{*} 128+1^{*} 64+1^{*} 32+1^{*} 16+1^{*} 8+1^{*} 4+1 * 2+1^{*} 1$
- 128 + $64+32+16+8+4+2+1=255$ (in decimal)
- Another way is: $\mathbf{1 *}^{*} \mathbf{2}^{\mathbf{8}} \mathbf{- 1} \mathbf{= 2 5 6 - 1 = 2 5 5}$

What would happen if we try to add 1 to the largest number that can be stored in one byte (8 bits)?

$$
\begin{array}{rllllllll}
& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
+ & & & & & & & & \\
& & & & & & & & 1 \\
& & & & & & & & \\
- & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Analogy with car odometers

Analogy with car odometers

Decimal to Binary Conversion (Using Guessing)

$$
17=16+1 \rightarrow 10001_{2}
$$

$$
\begin{aligned}
& 2^{7}=128 \\
& 2^{6}=64 \\
& 2^{5}=32 \\
& 2^{4}=16 \checkmark \\
& 2^{3}=8 \\
& 2^{2}=4 \\
& 2^{1}=2 \\
& 2^{0}=1 \checkmark
\end{aligned}
$$

Decimal to Binary Conversion (Using Guessing)

$$
212=128+64+16+4 \rightarrow 11010100_{2}
$$

$$
\begin{aligned}
& 2^{7}=128 \checkmark \\
& 2^{6}=64 \checkmark \\
& 2^{5}=32 \\
& 2^{4}=16 \checkmark \\
& 2^{3}=8 \\
& 2^{2}=4 \checkmark \\
& 2^{1}=2 \\
& 2^{0}=1
\end{aligned}
$$

Converting from Decimal to Binary

result remainder

$$
\begin{array}{rllrr}
235 & 2 & = & 117 & 1 \\
117 & / 2 & = & 58 & 1 \\
58 & / 2 & = & 29 & 0 \\
29 / 2 & = & 14 & 1 \\
14 / 2 & = & 7 & 0 \\
7 / 2 & = & 3 & 1 \\
3 & / 2= & 1 & 1 \\
1 & / 2 & = & 0 & 1
\end{array}
$$

Converting from Decimal to Binary

result remainder

$$
\begin{array}{rlllr}
235 & / & 2 & 117 \\
117 & / & 2 & = & 58 \\
58 & / & 2 & = & 29 \\
29 & / & 2 & = & 14 \\
14 & / & 2= & 7 \\
7 & / & 2= & 3 \\
3 & / & 2= & 1 \\
1 & / & 2= & 0 \\
& & & & \\
& & 2355_{10}=11101011_{2}
\end{array}
$$

Convert (857) 10

\[

\]

Result is $(1101011001)_{2}$
[Figure 1.6 in the textbook]

Octal System (Base 8)

$\begin{array}{rrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\ 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 \\ 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 \\ 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 \\ 60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 \\ 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77\end{array}$

Binary to Octal Conversion

Binary to Octal Conversion

$101110010111_{2}=?_{8}$

Binary to Octal Conversion

$101110010111_{2}=?_{8}$

101110010111

Binary to Octal Conversion

$101110010111_{2}=?_{8}$

Binary to Octal Conversion

$101110010111_{2}=?_{8}$

$\underbrace{101}_{5} \underbrace{110}_{6} \underbrace{010}_{2} \underbrace{111}_{7}$

Thus, $101110010111_{2}=5627_{8}$

Hexadecimal System (Base 16)

$$
\begin{gathered}
52_{16}=5 \times 16^{1}+2 \times 16^{0}= \\
5 \times 16+2 \times 1=
\end{gathered}
$$

$$
80+2=82_{10}
$$

The 16 Hexadecimal Digits

$$
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
$$

The 16 Hexadecimal Digits

$$
0,1,2,3,4,5,6,7,8,9, \quad A, \quad B, \quad C, \quad D, \quad E, \quad F
$$

Hexadecimal to Decimal Conversion

$$
\begin{aligned}
C 3_{16} & =C \times 16^{1}+3 \times 16^{0} \\
& =12 \times 16+3 \times 1 \\
& =192+3 \\
& =195_{10}
\end{aligned}
$$

Hexadecimal to Decimal Conversion

$$
B E E F_{16}=?_{10}
$$

Hexadecimal to Decimal Conversion

$$
\begin{aligned}
B E E F_{16} & =B_{16} \times 16^{3}+E_{16} \times 16^{2}+E_{16} \times 16^{1}+F_{16 \times} \times 16^{0} \\
& =11 \times 16^{3}+14 \times 16^{2}+14 \times 16^{1}+15 \times 16^{0} \\
& =11 \times 4096+14 \times 256+14 \times 16+15 \times 1 \\
& =45056+3584 \\
& =48879_{10}
\end{aligned}
$$

Binary to Hexadecimal Conversion

$$
\begin{array}{lll}
0000 & \rightarrow & 0 \\
0001 & \rightarrow & 1 \\
0010 & \rightarrow & 2 \\
0011 & \rightarrow & 3 \\
0100 & \rightarrow & 4 \\
0101 & \rightarrow & 5 \\
0110 & \rightarrow & 6 \\
0111 & \rightarrow & 7 \\
1000 & \rightarrow & 8 \\
1001 & \rightarrow & 9 \\
1010 & \rightarrow & A \\
1011 & \rightarrow & B \\
1100 & \rightarrow & C \\
1101 & \rightarrow & D \\
1110 & \rightarrow & E \\
1111 & \rightarrow & F
\end{array}
$$

Binary to Hexadecimal Conversion

0000	\rightarrow	0	\rightarrow	0
0001	\rightarrow	1	\rightarrow	1
0010	\rightarrow	2	\rightarrow	2
0011	\rightarrow	3	\rightarrow	3
0100	\rightarrow	4	\rightarrow	4
0101	\rightarrow	5	\rightarrow	5
0110	\rightarrow	6	\rightarrow	6
0111	\rightarrow	7	\rightarrow	7
1000	\rightarrow	8	\rightarrow	8
1001	\rightarrow	9	\rightarrow	9
1010	\rightarrow	10	\rightarrow	A
1011	\rightarrow	11	\rightarrow	B
1100	\rightarrow	12	\rightarrow	C
1101	\rightarrow	13	\rightarrow	D
1110	\rightarrow	14	\rightarrow	E
1111	\rightarrow	15	\rightarrow	F

Binary to Hexadecimal Conversion

$101110010111_{2}=?_{16}$

Binary to Hexadecimal Conversion

$101110010111_{2}=?_{16}$

101110010111

Binary to Hexadecimal Conversion

$$
\begin{aligned}
& 101110010111_{2}=?_{16} \\
& \underbrace{1011}_{B_{B}} \underbrace{1001}_{9} \underbrace{0111}_{7}
\end{aligned}
$$

Binary to Hexadecimal Conversion

$$
101110010111_{2}=?_{16}
$$

101110010111

B 97

Thus, $101110010111_{2}=$ B97 $_{16}$

Decimal to Hexadecimal Conversion

$$
1396_{10}=574_{16}
$$

result remainder

$1396 / 16$	$=$	87	4
$87 / 16$	$=$	5	7
$5 / 16$	$=$	0	5

Decimal to Hexadecimal Conversion

$$
502_{10}=1 F 6_{16}
$$

result remainder

$502 / 16$	$=$	31	6
$31 / 16$	$=$	1	15
$1 / 16$	$=$	0	1

Signed integers are more complicated

We will talk more about them when we start with Chapter 3 in a couple of weeks.

The story with floats is even more complicated IEEE 754-1985 Standard

[http://en.wikipedia.org/wiki/IEEE_754]
fraction (23-bit)

$v=(-1)^{\text {sign }} \times 2^{\text {exponent-exponent bias }} \times 1$.fraction
$s=+1$ (positive numbers and +0) when the sign bit is 0
$s=-1$ (negative numbers and -0) when the sign bit is 1
e = exponent -127 (in other words the exponent is stored with 127 added to it, also called "biased with 127")

In the example shown above, the sign is zero so s is +1 , the exponent is 124 so e is -3 , and the significand m is 1.01 (in binary, which is 1.25 in decimal). The represented number is therefore $+1.25 \times 2^{-3}$, which is $\mathbf{+ 0 . 1 5 6 2 5}$.
[http://en.wikipedia.org/wiki/IEEE_754]

On-line IEEE 754 Converter

- https://www.h-schmidt.net/FloatConverter/IEEE754.htmI
- More about floating point numbers in Chapter 3.

Storing Characters

- This requires some convention that maps binary numbers to characters.
- ASCII table
- Unicode

ASCII Table

Dec	Hx Oct Char		Dec Hx	Oct	Html Chr		c Hx		ml Chr		Hx Oct	Html Ch	
0	0000 NUL	(null)	3220	040	\&\#32; Space	64	401		\&\#64; ${ }^{\text {a }}$	96	60140	\&\#96;	
1	100150 H	(start of heading)	3321	041	\&\#33;	65	411	101	c\#65; A	97	61141	\&\#97;	a
2	2002 STX	(start of text)	3422	042	\&\#34;	66	6421	102	¢\#66; B	98	62142	\&\#98;	b
3	3003 ETX	(end of text)	3523	043	\&\#35;	67	431	103	¢\#67; C	99	63143	\&\#99;	c
4	4004 E0T	(end of transmission)	3624	044	\&\#36;	68	441	104	\&\#68; D	100	64144	\&\#100;	d
5	5005 ENQ	(enquiry)	3725	045	\&\#37;	69	451	105	¢\#69; E	101	65145	\&\#101;	e
6	6006 ACK	(acknowledge)	3826	046	\&\#38;	70	461	106	c\#70; F	102	66146	\&\#102;	
7	7007 BEL	(bell)	3927	047	\&\#39;	71	171	107	¢\#71: G	103	67147	\&\#103;	g
8	8010 BS	(backspace)	4028	050	\&\#40;	72	481	110	\&\#72; H	104	68150	\&\#104;	h
9	9011 TAB	(horizontal tab)	4129	051	\&\#41;	73	491	111	\&\#73; I	105	69151	\&\#105;	i
10	A 012 LF	(NL line feed, new line)	$42 \mathrm{2A}$	052	\&\#42;	74	$44^{4} 1$	112	¢\#74;	106	6A 152	\&\#106;	j
11	B 013 VT	(vertical tab)	43 2B	053	\&\#43;	75	4 B	113	\&\#75; K	107	6 B 153	\&\#107;	k
12	C 014 FF	(NP form feed, new page)	442 C	054	\&\#44;	76	64 C 1	114	¢\#76; L	108	6 C 154	\&\#108;	
13	D 015 CR	(carriage return)	45 2D	055	\&\#45;	77	4D 1	115	\&\#77; M	109	6D 155	\&\#109;	II
14	E 016 S0	(shift out)	46 2E	056	¢\#46;	78	4 E 1	116	6\#78; N	110	6 E 156	\&\#110;	
15	F 017 SI	(shift in)	47 2F	057	\&\#47;	79	4 F	117	c\#79; 0	111	6 F 157	\&\#111;	
16	10020 DLE	(data link escape)	4830	060	\&\#48;	80	50	120	\&\#80; P	112	70160	\&\#112;	
17	11021 DCl	(device control 1)	4931	061	\&\#49; 1	81	511	121	\&\#81: 0	113	71161	\&\#113;	
18	12022 DC2	(device control 2)	5032	062	\&\#50; 2	82	52	122	¢\#82; R	114	72162	\&\#114;	
19	13023 DC3	(device control 3)	5133	063	\&\#51; 3	83	53	123	c\#83; S	115	73163	\&\#115;	
20	14024 DC4	(device control 4)	5234	064	\&\#52; 4	84	44	124	¢\#84; T	116	74164	\&\#116;	
21	15025 NAK	(negative acknowledge)	5335	065	\&\#53; 5	85	551	125	c\#85; U	117	75165	\&\#117;	
22	16026 SYN	(synchronous idle)	5436	066	\&\#54; 6	86	56	126	\&\#86; V	118	76166	\&\#118;	
23	17027 ETB	(end of trans. block)	5537	067	\&\#55; 7	87	571	127	¢\#87: Ј	119	77167	\&\#119;	
24	18030 CAN	(cancel)	5638	070	\&\#56; 8	88	581	130	\&\#88; X	120	78170	\&\#120;	X
25	19031 EM	(end of medium)	5739	071	\&\#57;	89	591	131	¢\#89; Y	121	79171	\&\#121;	
26	1A 032 SUB	(substitute)	58 3A	072	\&\#58;	90	5A 1	132	\&\#90; Z	122	7A 172	\&\#122;	
27	1B 033 ESC	(escape)	59 3B	073	\&\#59;	91	5B	133	\&\#91: [123	7B 173	\&\#123;	
28	1C 034 FS	(file separator)	60 3C	074	\&\#60,		5C 1	134	\&\#92;	124	7 C 174	\&\#124;	
29	1D 035 GS	(group separator)	61 3D	075	\&\#61;	93	5D	135	\&\#93;]	125	7D 175	\&\#125;	
30	1E 036 RS	(record separator)	62 3E	076	¢\#62;	94	4 5E 1	136	6\#94;	126	7E 176	\&\#126;	
31	1F 037 US	(unit separator)	63 3F	077	\&\#63;	95	5 F 1	137	\&\#95;	127	7F 177	\&\#127;	DEL

Source: www.LookupTables.com

Extended ASCII Codes

128	C	144	É	161	i	177		193	\perp	209	¢	225	β	241	\pm
129	ü	145	＊	162	ó	178		194	T	210	π	226	Γ	242	\geq
130	é	146	E	163	ú	179	－	195	F	211	แ	227	π	243	\leq
131	a	147	6	164	fi	180	\dagger	196	－	212	t	228	Σ	244	1
132	a	148	ö	165	N゙	181	＝	197	＋	213	F	229	\square	245	J
133	à	149	ò	166	a	182	，	198	F	214	π	230	μ	246	\square
134	a	150	ut	167	－	183	π	199	II	215	H	231	τ	247	\approx
135	¢	151	ù	168	i	184	7	200	L	216	\＃	232	Φ	248	。
136	ê	152	－	169		185	\＃	201	「	217	」	233	（i）	249	
137	ё	153	O	170	\neg	186	\｜	202	$\xrightarrow{\Perp}$	218	「	234	Ω	250	
138	è	154	Ü	171	1／2	187	7	203	\bar{T}	219	\square	235	δ	251	$\sqrt{ }$
139	i	156	E	172	1／4	188	』	204	Is	220	\square	236	∞	252	
140	i	157	¥	173	i	189	\Perp	205	＝	221	I	237	中	253	2
141	1	158	－	174	《	190	\pm	206	π	222	I	238	ε	254	\square
142	A	159	f	175	》	191	7	207	\pm	223	－	239	\bigcirc	255	
143	A	160	a	176	\％	192	L	208	\Perp	224	α	240	三		

Source：www．LookupTables．com

The Unicode Character Code

- http://www.unicode.org/charts/

Egyptian Hieroglyphs

Close up

http://www.unicode.org/charts/

Questions?

THE END

