

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Logic Gates

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW1 is out. It is due on Monday Aug 30 @ 4pm.
- Submit it as a PDF upload on Canvas before the deadline.
- You can write the solutions on paper and then scan the pages to make **one** PDF file.
- No late homeworks will be accepted.
- Please write clearly on the first page:
- your name
- student ID
- lab section number

Labs Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- https://www.ece.iastate.edu/~alexs/classes/2021_Fall_281/labs/Lab_01/
- You must print and complete the prelab before you go to the lab.
- The TAs will check your prelab answers at the beginning of the recitation. If you don't have it done you'll lose $\mathbf{2 0 \%}$ of the lab grade for that lab.

CprE 281: Digital Logic

Fall 2021, 4:25-5:15 p.m. (Mondays, Wednesdays, and Fridays)
LeBaron Hall, Room 1210
Instructor: Alexander Stoytchev

- Syllabus
- Class Schedule (Tentative)
- Lecture Notes (also in PDF)
- Labs
- Recitations
- Extra Readings
- Verilog Stuff
- Verilog Reference
- i281 CPU

CprE 281: Digital Logic

Fall 2021, 4:25-5:15 p.m. (Mondays, Wednesdays, and Fridays)
LeBaron Hall, Room 1210
Instructor: Alexander Stoytchev

- Syllabus
- Class Schedule (Tentative)
- Lecture Notes (also in PDF)
- Labs
- Recitations
- Extra Readings
- Verilog Stuff
- Verilog Reference
- $\mathbf{i} 281 \mathrm{CPU}$

Index of /~alexs/classes/2021_Fall_281/labs

Name Last modified Size Description

Parent Directory

Lab_01/	27-Aug-2021 14:06
Lab_02/	27-Aug-2021 14:09 -

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Index of /~alexs/classes/2021_Fall_281/labs/Lab_01

Name	Last modified	Size Description
* Parent Directory		-
9 CPRE281_LAB01 (Answer_Sheet).docx	27-Aug-2021 14:02	26K
寈 CPRE281_LAB01(Answer_Sheet).pdf	27-Aug-2021 14:03	38K
(\%) CPRE281_LAB01.docx	27-Aug-2021 14:04	1.9 M
CPRE281_LAB01.pdf	27-Aug-2021 14:04	1.4 M
Af lab1.zip	27-Aug-2021 13:56	5.4M

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Index of /~alexs/classes/2021_Fall_281/labs/Lab_01

Name Last modified Size Description

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Index of /~alexs/classes/2021_Fall_281/labs/Lab_01

Name	Last modified	Size	tion
* Parent Directory		-	
\%) CPRE281_LAB01(Answer_Sheet).docx	27-Aug-2021 14:02	26K	
昒 CPRE281_LAB01(Answer_Sheet).pdf	7-Aug-2021 14:03	338K	
(f) CPRE281_LAB01.docx	27-Aug-2021 14:04	1.9M	
韯 CPRE281_LAB01.pdf	27-Aug-2021 14:04	1.4 M	
, lab1.zip	27-Aug-2021 13:56	5.4 M	

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80
\qquad Lab Section:___

Date: \qquad

PRELAB:

Q1. Fill in the Truth Table below for an AND gate:

This is the prelab for lab \#1.

Q2. What does the .bdf file extension stand for?

Q3. What is the name of the FPGA on the DE2-115 board?

TA Initials: \qquad

LAB:

2.0 Fill in the Truth Table for lab1step1:

A	B	C
0	0	
0	1	
1	0	
1	1	

Logic Expression: \qquad

Lab 1 Answer Sheet

Quartus Simulation TA Initials: \qquad Questa ModelSim TA Initials: \qquad
4.0 Fill in the Truth Table for lab1step2:

W	X	Y	Z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Logic Expression: \qquad

TA Initials: \qquad
4.0 Fill in the Truth Table for Iab1step3:

Logic Expression: \qquad
TA Initials: \qquad

A Binary Switch

(a) Two states of a switch

(b) Symbol for a switch

A Light Controlled by a Switch

(a) Simple connection to a battery

A Light Controlled by a Switch

A Light Controlled by a Switch

A Light Controlled by a Switch

(b) Using a ground connection as the return path

The Logical AND function (series connection of the switches)

[Figure 2.3a from the textbook]

The Logical AND function (series connection of the switches)

$$
x_{1}=0 \quad x_{2}=0
$$

The Logical AND function (series connection of the switches)

$$
x_{1}=1 \quad x_{2}=0
$$

The Logical AND function (series connection of the switches)

$$
x_{1}=0 \quad x_{2}=1
$$

The Logical AND function (series connection of the switches)

$$
x_{1}=1 \quad x_{2}=1
$$

The Logical OR function (parallel connection of the switches)

[Figure 2.3b from the textbook]

The Logical OR function (parallel connection of the switches)

$$
x_{1}=0
$$

The Logical OR function (parallel connection of the switches)

$$
x_{1}=1
$$

The Logical OR function (parallel connection of the switches)

$$
x_{1}=0
$$

The Logical OR function (parallel connection of the switches)

$$
x_{1}=1
$$

An Inverting Circuit

[Figure 2.5 from the textbook]

An Inverting Circuit

An Inverting Circuit

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

x	\bar{x}
0	1
1	0

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

Truth Tables for AND and OR

[Figure 2.6b from the textbook]

Logic Gates with n Inputs

AND gate

$x_{1}+x_{2}+\ldots+x_{n}$

Truth Table for 3-input AND and OR

x_{1}	x_{2}	x_{3}	x_{1}	x_{2}	x_{3}	$x_{1}+x_{2}+x_{3}$
0	0	0		0	0	
0	0	1		0	1	
0	1	0	0	1		
0	1	1		0	1	
1	0	0		0	1	
1	0	1		0	1	
1	1	0	0	1		
1	1	1	1	1		

[Figure 2.7 from the textbook]

A series-parallel connection of the switches

[Figure 2.4 from the textbook]

Example of a Logic Circuit Implemented with Logic Gates

Example of a Logic Circuit Implemented with Logic Gates

[Figure 2.8 from the textbook]

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis with Sequential Inputs

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis with Sequential Inputs

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis with Sequential Inputs

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

Circuit Analysis with Sequential Inputs

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

[Figure 2.10 from the textbook]

Circuit Analysis with Sequential Inputs

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

[Figure 2.10 from the textbook]

Circuit Analysis with Sequential Inputs

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

[Figure 2.10 from the textbook]

Timing Diagram

[Figure 2.10 from the textbook]

Truth Table for this Logic Circuit

[Figure 2.10 from the textbook]

Truth Table for this Logic Circuit

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

Functionally Equivalent Circuits

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$
[Figure 2.10 from the textbook]

Functionally Equivalent Circuits

(a) Network that implements $f=\bar{x}_{1}+x_{1} \cdot x_{2}$

(d) Network that implements $g=\bar{x}_{1}+x_{2}$
[Figure 2.10 from the textbook]

The XOR Logic Gate

(a) Two switches that control a light

(b) Truth table
[Figure 2.11 from the textbook]

The XOR Logic Gate

[Figure 2.11 from the textbook]

XOR Analysis

[Figure 2.11c from the textbook]

XOR Analysis ($x=0, y=0$)

XOR Analysis

[Figure 2.11c from the textbook]

XOR Analysis ($x=0, y=1$)

XOR Analysis

[Figure 2.11c from the textbook]

XOR Analysis ($x=1, y=0$)

XOR Analysis

[Figure 2.11c from the textbook]

XOR Analysis ($\mathrm{x}=1, \mathrm{y}=1$)

Truth Table for XOR

Truth Table for XOR

The output is 1 only if both inputs are different.

Addition of Binary Numbers

[Figure 2.12 from the textbook]

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

[Figure 2.12 from the textbook]

Addition of Binary Numbers

a	0	0	1	1
$+b$	$\frac{+0}{00}$	$\frac{+1}{01}$	$\frac{+0}{01}$	$\frac{+1}{10}$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	0	0	1	1
$+b$	$\frac{+0}{00}$	$\frac{+1}{01}$	$\frac{+0}{01}$	$\frac{+1}{10}$

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

	$?$				$?$	
a	b	s_{1}	s_{0}			
0	0		0			
0	1	0				
1	0	0	1			
1	1	0	1			
		1	0			

Addition of Binary Numbers

	AND		
a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

Addition of Binary Numbers

					XOR		
a	b	s_{1}	s_{0}				
0	0	0	0				
0	1	0	1				
1	0	0	1				
1	1	1	0				

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of Binary Numbers

a	b	s_{1}	s_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

The following examples came from this book click to LOOK INSIDE!

Uum thingout, rana thing cep-ifiti how powleam

Make:

 ElectronicsLearning by
Disconery

[Platt 2009]

$O R$

\sum_{0}	\bar{z}	0
5_{0}	\sum_{1}	$\frac{1}{0}$
0	$>$	-1
NO	NO	NO
NO YES	YES	
YES NO	YES	
YES YES	YES	

[Platt 2009]

[Platt 2009]

Questions?

THE END

