

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Logic Gates

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW1 is out. It is due on Monday Aug 30 @ 4pm.
- Submit it as a PDF upload on Canvas before the deadline.
- You can write the solutions on paper and then scan the pages to make **one** PDF file.
- No late homeworks will be accepted.
- Please write clearly on the first page:
 - your name
 - student ID
 - lab section number

Labs Next Week

- Please download and read the lab assignment for next week before you go to your lab section.
- https://www.ece.iastate.edu/~alexs/classes/2021_Fall_281/labs/Lab_01/
- You must print and complete the prelab before you go to the lab.
- The TAs will check your prelab answers at the beginning of the recitation. If you don't have it done you'll lose 20% of the lab grade for that lab.

Fall 2021, 4:25 - 5:15 p.m. (Mondays, Wednesdays, and Fridays)

LeBaron Hall, Room 1210

Instructor: Alexander Stoytchev

- Syllabus
- Class Schedule (Tentative)
- <u>Lecture Notes</u> (also in <u>PDF</u>)
- Labs

 \leftarrow \rightarrow C

- Recitations
- Extra Readings
- Verilog Stuff
- Verilog Reference
- i281 CPU

CprE 281: Digital Logic

Fall 2021, 4:25 - 5:15 p.m. (Mondays, Wednesdays, and Fridays)

LeBaron Hall, Room 1210

Instructor: Alexander Stoytchev

- Syllabus
- Class Schedule (Tentative)
- Lecture Notes (also in PDF)
- Labs
- Recitations
- Extra Readings
- Verilog Stuff
- <u>Verilog Reference</u>
- i281 CPU

Index of /~alexs/classes/2021_Fall_281/labs

<u>Name</u>	Last modified	Size Description
Parent Directory	<u>/</u>	
<u>Lab_01/</u>	27-Aug-2021 14:06	-
<u>Lab_02/</u>	27-Aug-2021 14:09	-

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Index of /~alexs/classes/2021_Fall_281/labs/Lab_01

<u>Name</u>	Last modified	Size Description
Parent Directory		
CPRE281_LAB01(Answer_S	Sheet).docx 27-Aug-2021 14:02	26K
CPRE281_LAB01(Answer_S		
CPRE281_LAB01.docx	27-Aug-2021 14:04	1.9M
CPRE281_LAB01.pdf	27-Aug-2021 14:04	1.4M
lab1.zip	27-Aug-2021 13:56	5.4M

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Index of /~alexs/classes/2021_Fall_281/labs/Lab_01

Name Last modified	Size Description
Parent Directory CPRE281_LAB01(Answer_Sheet).docx 27-Aug-2021 14:02 CPRE281_LAB01(Answer_Sheet).pdf 27-Aug-2021 14:03 CPRE281_LAB01.docx 27-Aug-2021 14:04 CPRE281_LAB01.pdf 27-Aug-2021 14:04 Iab1.zip 27-Aug-2021 13:56	and bring it with you to the lab.

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Index of /~alexs/classes/2021_Fall_281/labs/Lab_01

<u>Name</u>	Last modified	Size I	<u>Description</u>
<u>CPRE281_LAB01.pdf</u> 27	_	338K 1.9M 1.4M	This is the same, but in PDF format.

Apache/2.2.15 (Red Hat) Server at www.ece.iastate.edu Port 80

Cpr E 281 LAB1 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

1

0

1

1

1

Logic Expression:

Date:__

Lab 1 Answer Sheet

Lab Section:___

PRELAE	3:			
Q1. Fill i	in the Truth	Table below	for an AND gate:	
Α	В	С		
0	0			
0	1			
1	0			
1	1			
Q2. What does the .bdf file extension stand for? Q3. What is the name of the FPGA on the DE2-115 board?				
TA Initia	ls:	_		
LAB: 2.0 Fill in	n the Truth 1	Γable for <i>lαb</i> .	1step1:	
Α	В	С		
0	0			

Name and Student ID:

This is the prelab for lab #1.

Cpr E 281 LAB1 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Lab 1 Answer Sheet

V	X	Y	Z	
)	0	0		
:		1		:
		0		i
		1		
		0		
		1		;
		0		
xpr	ession: :			
xpr ials in	ession: : the Truth	Table for <i>lal</i>	b1step3:	
xpr ials	ession: : the Truth	Table for <i>lal</i>	51step3: F	
Expr tials	ession: : the Truth	Table for <i>lal</i>	51step3: F	
Expr itials ill in	ession: : the Truth	Table for <i>lal</i>	o1step3: F	
Expr nitials	ession: : the Truth	Table for <i>lal</i>	o1step3: F	
Expr nitials	the Truth	Table for <i>lal</i>	o1step3:	
Expr itials	the Truth	Table for <i>lal</i>	o1step3:	
Expr nitials	the Truth	Table for <i>lal</i>	o1step3:	

A Binary Switch

(a) Two states of a switch

(b) Symbol for a switch

(a) Simple connection to a battery

(b) Using a ground connection as the return path

An Inverting Circuit

An Inverting Circuit

An Inverting Circuit

The Three Basic Logic Gates

$$X_1$$
 X_2
 $X_1 \times X_2$

$$X_1$$
 X_2
 $X_1 + X_2$

NOT gate

AND gate

OR gate

Truth Table for NOT

\mathcal{X}	$\overline{\mathcal{X}}$
0	1
1	0

Truth Table for AND

x_1	x_2	$x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

$x_1 + x_2$
0
1
1
1

Truth Tables for AND and OR

x_1	x_2	$oxed{x_1 x_2}$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

AND OR

Logic Gates with n Inputs

AND gate

OR gate

Truth Table for 3-input AND and OR

x_1	x_2	x_3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	$1 \mid$	1	1

A series-parallel connection of the switches

Example of a Logic Circuit Implemented with Logic Gates

$$x_{1}$$
 x_{2}
 x_{3}
 $f = (x_{1} + x_{2}) \times x_{3}$

Example of a Logic CircuitImplemented with Logic Gates

Timing Diagram

Truth Table for this Logic Circuit

x_1 x_2 $f(x_1)$	(x_{2})
0 0	1
0 1	1
1 0 (0
1 1	1

Truth Table for this Logic Circuit

x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

Functionally Equivalent Circuits

Functionally Equivalent Circuits

(a) Network that implements $f = \bar{x}_1 + x_1 \cdot x_2$

(d) Network that implements $g = \bar{x}_1 + x_2$

The XOR Logic Gate

х	y	L
0	0	0
0	1	1
1	0	1
1	1	0

(a) Two switches that control a light

(b) Truth table

The XOR Logic Gate

х	у	L
0	0	0
0	1	1
1	0	1
1	1	0

(a) Two switches that control a light

(b) Truth table

(c) Logic network

(d) XOR gate symbol

XOR Analysis

XOR Analysis (x=0, y=0)

XOR Analysis

XOR Analysis (x=0, y=1)

XOR Analysis

XOR Analysis (x=1, y=0)

XOR Analysis

XOR Analysis (x=1, y=1)

Truth Table for XOR

х	y	L
0	0	0
0	1	1
1	0	1
1	1	0

Truth Table for XOR

The output is 1 only if both inputs are different.

a	b	<i>s</i> ₁	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

a	0	0	1	1
+ <i>b</i>	+ 0	+ 1	+ 0	+ 1
$s_1 s_0$	0 0	0 1	0 1	1 0

a	b	<i>s</i> ₁	<i>s</i> ₀
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

a	0	0	1	1
+ <i>b</i>	+ 0	+ 1	+ 0	+ 1
$s_1 s_0$	0 0	0 1	0 1	1 0

a	b	<i>s</i> ₁	<i>s</i> ₀	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

$$a$$
 $+b$
 $s_1 s_0$

a b	s ₁ s ₀
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0
	1

a	0	0	1	1
+ <i>b</i>	+0	+ 1	+ 0	+ 1
$s_1 s_0$			0 1	

a	b	<i>s</i> ₁	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

a	0	0	1	1
+ <i>b</i>	+ 0	+ 1	+ 0	+ 1
$s_1 s_0$			0 1	

a	b		<i>s</i> ₁	s_0
0	0		0	0
0	1		0	1
1	0		0	1
1	1		1	0

$$a$$
 $+b$
 $s_1 s_0$

a b	s ₁ s ₀
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0
	1

$$a + b$$
 $s_1 s_0$

a	b	S	1	s_0
0	0	0)	0
0	1	0)	1
1	0	0)	1
1	1	1		0

$$a$$
 $+b$
 s_1s_0
 0

a	b	<i>s</i> ₁	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$a$$
 $+b$
 $s_1 s_0$

a b	s ₁ s ₀
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0
	1

$$a + b$$
 $s_1 s_0$

а	b	S	1	s_0
0	0	()	0
0	1	()	1
1	0	()	1
1	1	1	l	0

$$a + b$$
 $s_1 s_0$

+	0	4	+ 1
0	1	1	0

s_1	s_0	
0	0	
0	1	
0	1	
1	0	
	0	0 0 0 1 0 1

$$a$$
 $+b$
 $s_1 s_0$

a b	s ₁ s ₀
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0
	1

a	b	s_1	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

		?	
a	b	s_1	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

	AND			
a	b		s_1	s_0
0	0		0	0
0	1		0	1
1	0		0	1
1	1		1	0

a	b	s_1	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

			?	
a	b	<i>s</i> ₁	s_0	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

		XOR		
a	b	<i>s</i> ₁	s_0	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

a	b	s_1	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

a	b	<i>s</i> ₁	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
	0 1		•

a	b	<i>s</i> ₁	s_0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

The following examples came from this book

[Platt 2009]

Questions?

THE END