

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Boolean Algebra

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

• HW1 is due today

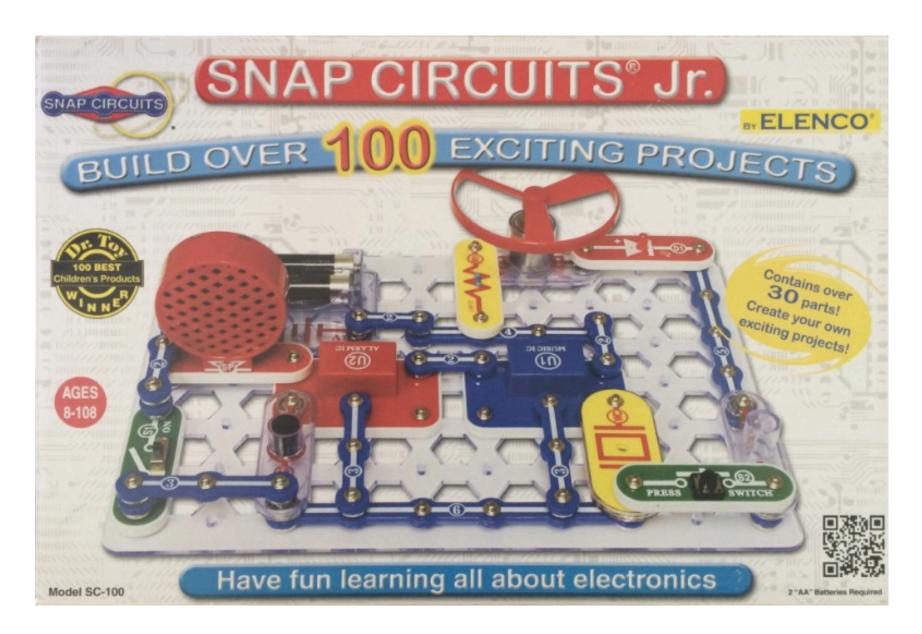
Administrative Stuff

• HW2 is out

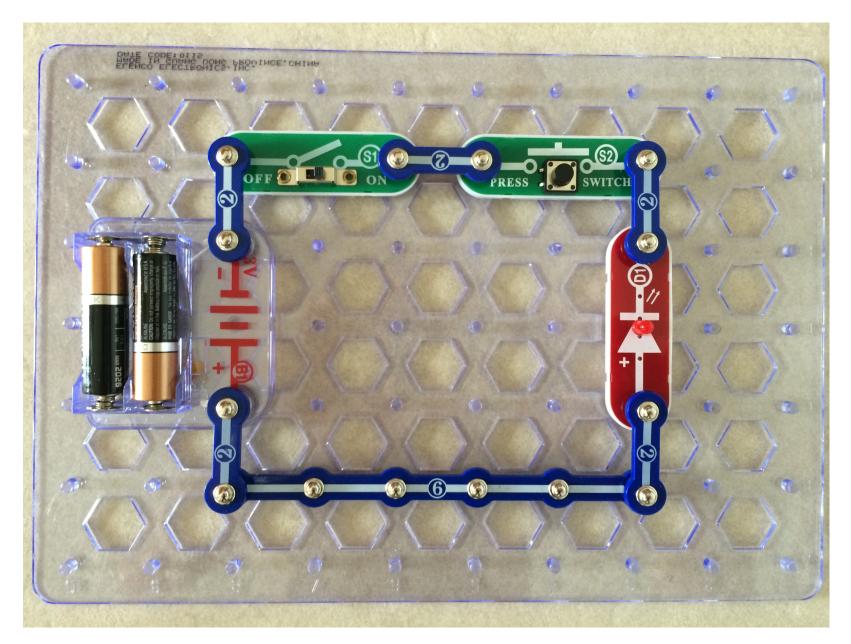
• It is due on Wednesday Sep 8 @ 4pm.

• Submit it on Canvas before the deadline.

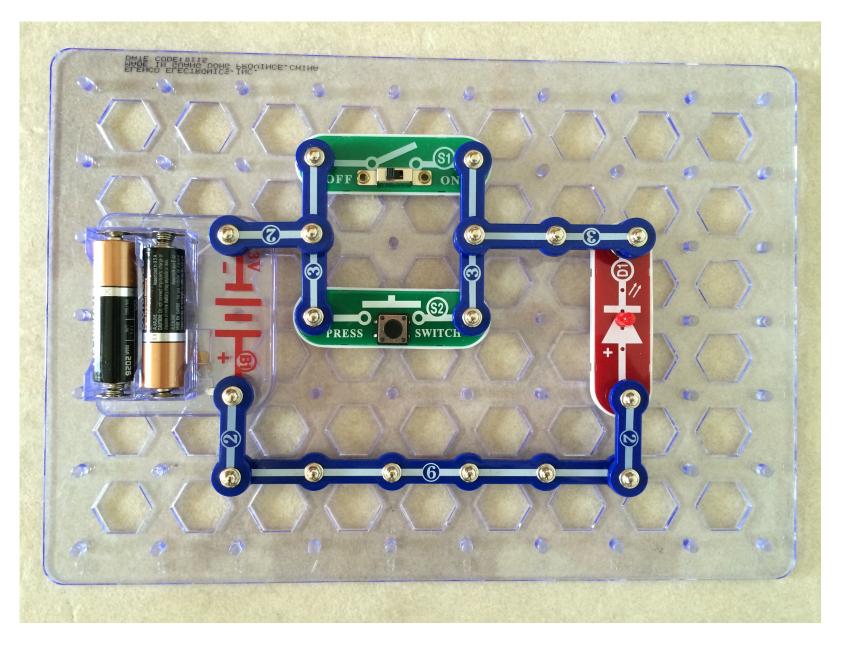
Did you play with this toy?



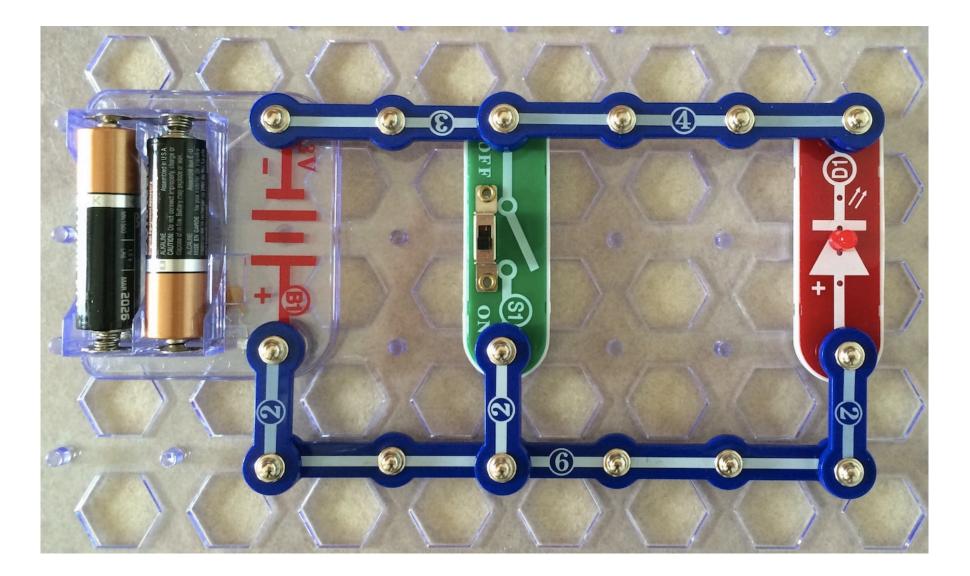
AND Gate



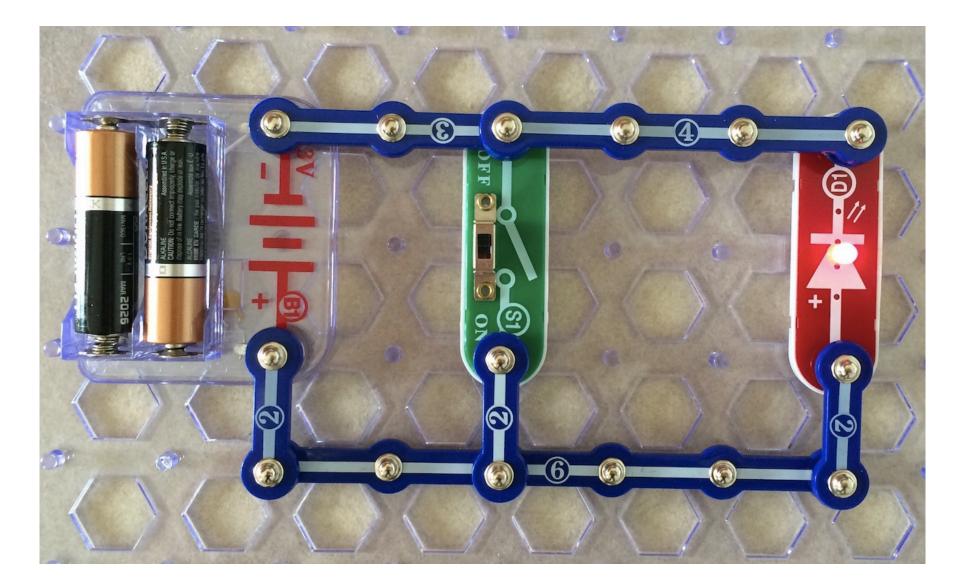
OR Gate



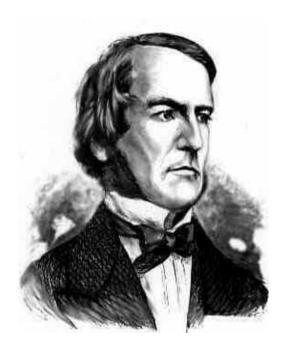
NOT Gate (the switch is ON but the light is OFF)



NOT Gate (the switch is OFF but the light is ON)



Boolean Algebra



• An algebraic structure consists of

- a set of elements {0, 1}
- binary operators {+, •}
- and a unary operator { ' } or { } or { ~ }
- Introduced by George Boole in 1854

George Boole 1815-1864

- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Axioms of Boolean Algebra

1a.	$0 \bullet 0 = 0$
1b.	1 + 1 = 1
2a.	$1 \cdot 1 = 1$
2b.	0 + 0 = 0
3a.	$0 \cdot 1 = 1 \cdot 0 = 0$
3b.	1 + 0 = 0 + 1 = 1
4a.	If x=0, then $\overline{x} = 1$
4b.	If $x=1$, then $\overline{x} = 0$

Single-Variable Theorems

5a.	$\mathbf{x} \bullet 0 = 0$
5b.	x + 1 = 1
6a.	$x \cdot 1 = x$
6b.	$\mathbf{x} + 0 = \mathbf{x}$
7a.	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
7b.	x + x = x
8a.	$x \cdot \overline{x} = 0$
8b.	$x + \overline{x} = 1$
9.	$\overline{\overline{\mathbf{x}}} = \mathbf{x}$

Two- and Three-Variable Properties

10a.	$\mathbf{x} \bullet \mathbf{y} = \mathbf{y} \bullet \mathbf{x}$	Commutative
1 0 b.	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	
11a.	$x \bullet (y \bullet z) = (x \bullet y) \bullet z$	Associative
11b.	x + (y + z) = (x + y) + z	
12a.	$x \bullet (y + z) = x \bullet y + x \bullet z$	Distributive
12b.	$\mathbf{x} + \mathbf{y} \cdot \mathbf{z} = (\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{z})$	
13a.	$x + x \bullet y = x$	Absorption
13b.	$\mathbf{x} \bullet (\mathbf{x} + \mathbf{y}) = \mathbf{x}$	

Two- and Three-Variable Properties

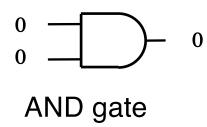
14a.	$\mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \overline{\mathbf{y}} = \mathbf{x}$	Combining
14b.	$(x + y) \bullet (x + \overline{y}) = x$	
15a.	$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	DeMorgan's
1041		
15b.	$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$	theorem
16a.	$\mathbf{x} + \mathbf{\overline{x}} \bullet \mathbf{y} = \mathbf{x} + \mathbf{y}$	
16b.	$\mathbf{x} \bullet (\mathbf{\overline{x}} + \mathbf{y}) = \mathbf{x} \bullet \mathbf{y}$	
17a.	$x \bullet y + y \bullet z + \overline{x} \bullet z = x \bullet y + \overline{x} \bullet z$	Consensus
17b.	$(x+y) \bullet (y+z) \bullet (\overline{x}+z) = (x+y) \bullet (\overline{x}+z)$	

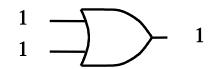
Now, let's prove all of these

The First Four are Axioms (i.e., they don't require a proof) 1a. $0 \cdot 0 = 0$ 1b. 1 + 1 = 12a. $1 \cdot 1 = 1$ 2b. 0 + 0 = 03a. $0 \cdot 1 = 1 \cdot 0 = 0$ 3b. 1 + 0 = 0 + 1 = 14a. If x=0, then $\overline{x} = 1$ 4b. If x=1, then $\overline{x} = 0$

But here are some other ways to think about them

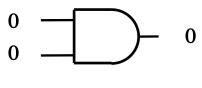
1a.
$$0 \cdot 0 = 0$$
 1b. $1 + 1 = 1$



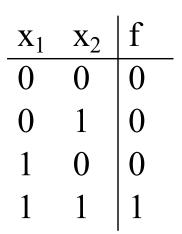


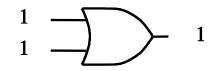
OR gate

1a.
$$0 \cdot 0 = 0$$
 1b. $1 + 1 = 1$

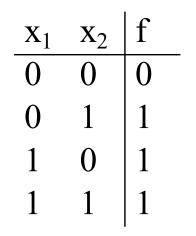


AND gate

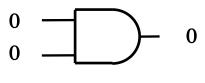




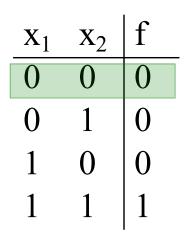
OR gate

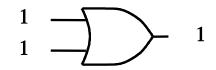


1a.
$$0 \cdot 0 = 0$$
 1b. $1 + 1 = 1$

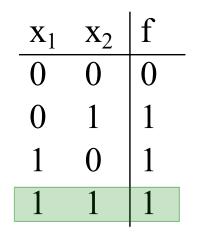


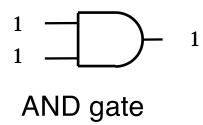
AND gate

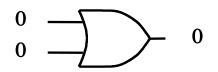




OR gate



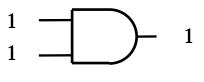




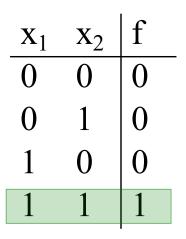
OR gate

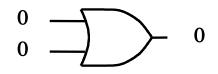
2a. $1 \cdot 1 = 1$

2b. 0 + 0 = 0

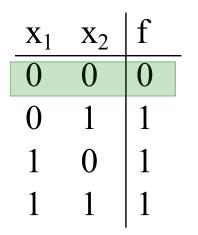


AND gate

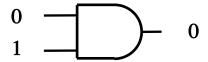




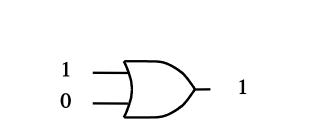
OR gate



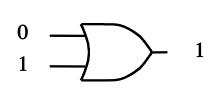
3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$
 3b. $1 + 0 = 0 + 1$





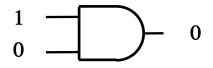


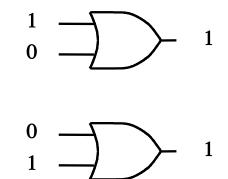
= 1



3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

 $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \longrightarrow 0$

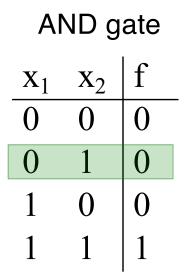




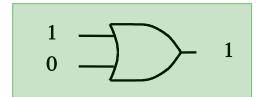
3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

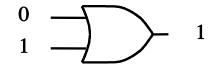
$$\begin{array}{c} 0 \\ 1 \end{array} \longrightarrow 0 \end{array}$$

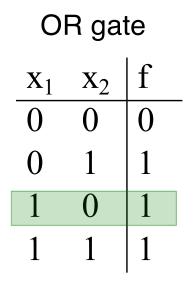
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \longrightarrow 0$$



3b.
$$1 + 0 = 0 + 1 = 1$$

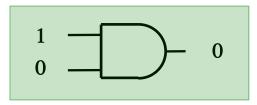


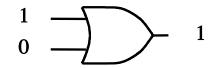


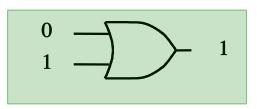


3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

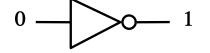
 $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \longrightarrow 0$

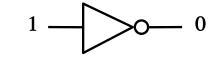




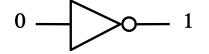


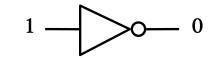
4a. If x=0, then
$$\overline{x} = 1$$
 4b. If x=1, then $\overline{x} = 0$



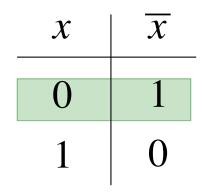


4a. If x=0, then $\overline{x} = 1$ 4b. If x=1, then $\overline{x} = 0$

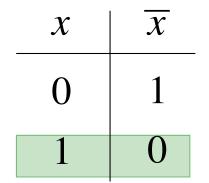




NOT gate



NOT gate



Single-Variable Theorems

5a.	$\mathbf{x} \bullet 0 = 0$
5b.	x + 1 = 1
6a.	$x \cdot 1 = x$
6b.	$\mathbf{x} + 0 = \mathbf{x}$
7a.	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
7b.	x + x = x
8a.	$x \cdot \overline{x} = 0$
8b.	$x + \overline{x} = 1$
9.	$\overline{\overline{\mathbf{x}}} = \mathbf{x}$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

$$0 \cdot 0 = 0$$
 // axiom 1a

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

$$0 \cdot 0 = 0$$
 // axiom 1a

ii) If x = 1, then we have

$$1 \cdot 0 = 0$$
 // axiom 3a

5b. x + 1 = 1

5b. x + 1 = 1

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

5b. x + 1 = 1

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

ii) If x = 1, then we have

1+1 = 1 // axiom 1b

6a. $x \cdot 1 = x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

$$0 \cdot 1 = 0$$
 // axiom 3a

ii) If x = 1, then we have

1 • 1 = 1 // axiom 2a

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

ii) If x = 1, then we have

// axiom 2a

6b. x + 0 = x

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

0 + 0 = 0 // axiom 2b

ii) If x = 1, then we have

1 + 0 = 1 // axiom 3b

6b. x + 0 = x

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

ii) If x = 1, then we have

// axiom 3b

7a. x • x = x

i) If
$$x = 0$$
, then we have

$$0 \cdot 0 = 0$$
 // axiom 1a

ii) If
$$x = 1$$
, then we have

$$\mathbf{0} \bullet \mathbf{0} = \mathbf{0}$$

ii) If
$$x = 1$$
, then we have

7b. x + x = x

i) If
$$x = 0$$
, then we have

$$0 + 0 = 0$$
 // axiom 2b

ii) If
$$x = 1$$
, then we have

7b.
$$x + x = x$$

i) If
$$x = 0$$
, then we have

ii) If x = 1, then we have

// axiom 1b

8a. $\mathbf{x} \cdot \mathbf{\overline{x}} = \mathbf{0}$

i) If
$$x = 0$$
, then we have

ii) If
$$x = 1$$
, then we have

$$1 \cdot 0 = 0$$
 // axiom 3a

8a. $x \cdot \bar{x} = 0$

i) If
$$x = 0$$
, then we have

ii) If
$$x = 1$$
, then we have

8b. $x + \overline{x} = 1$

i) If
$$x = 0$$
, then we have

ii) If
$$x = 1$$
, then we have

8b. $x + \bar{x} = 1$

i) If
$$x = 0$$
, then we have

// axiom 3b

ii) If x = 1, then we have

9.
$$\overline{x} = x$$

$$\overline{\mathbf{x}} = 1$$
 // axiom 4a

let
$$y = \overline{x} = 1$$
, then we have

 $\overline{y} = 0$ // axiom 4b

Therefore,

 $\frac{1}{x} = x$ (when x =0)

9.
$$\overline{x} = x$$

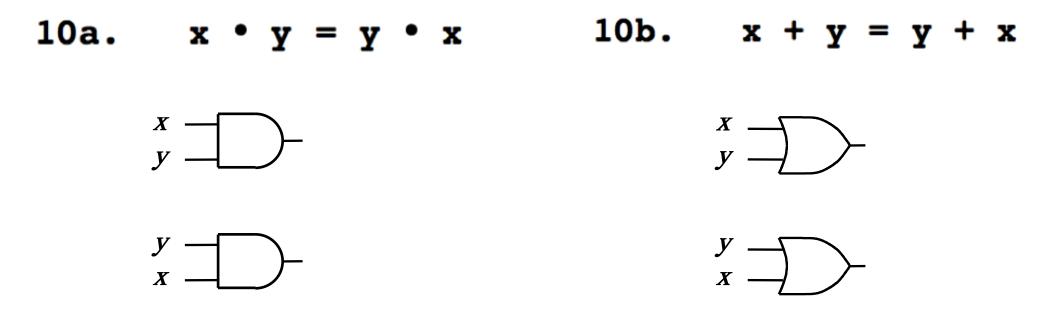
$$\overline{x} = 0$$
 // axiom 4b

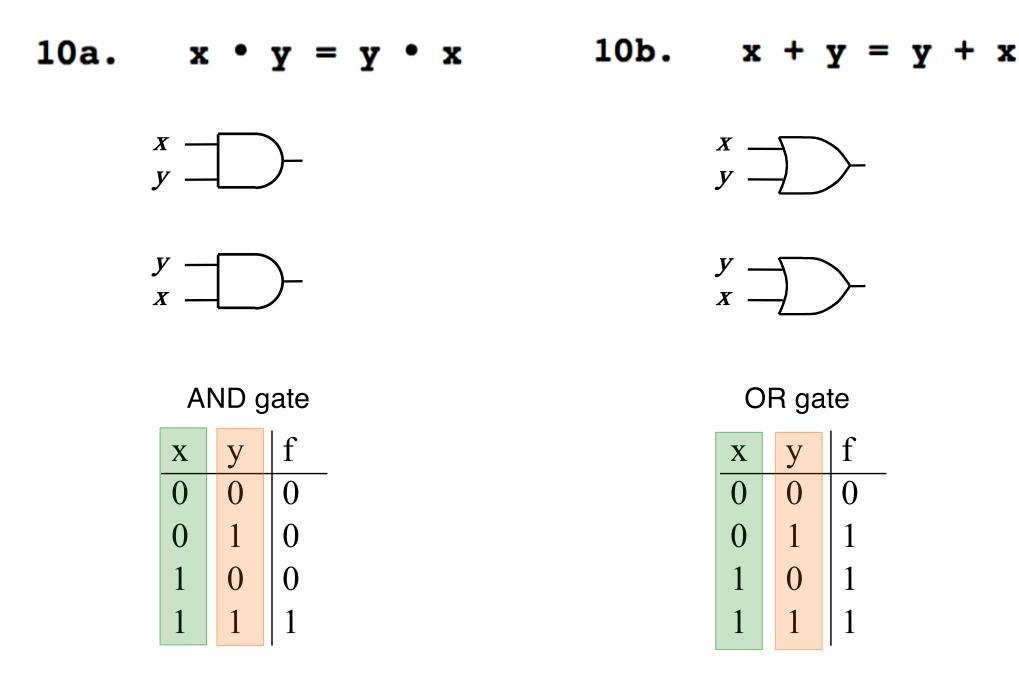
let
$$y = \overline{x} = 0$$
, then we have

y = 1 // axiom 4a

Therefore,

 $\frac{1}{x} = x$ (when x =1)





The order of the inputs does not matter.

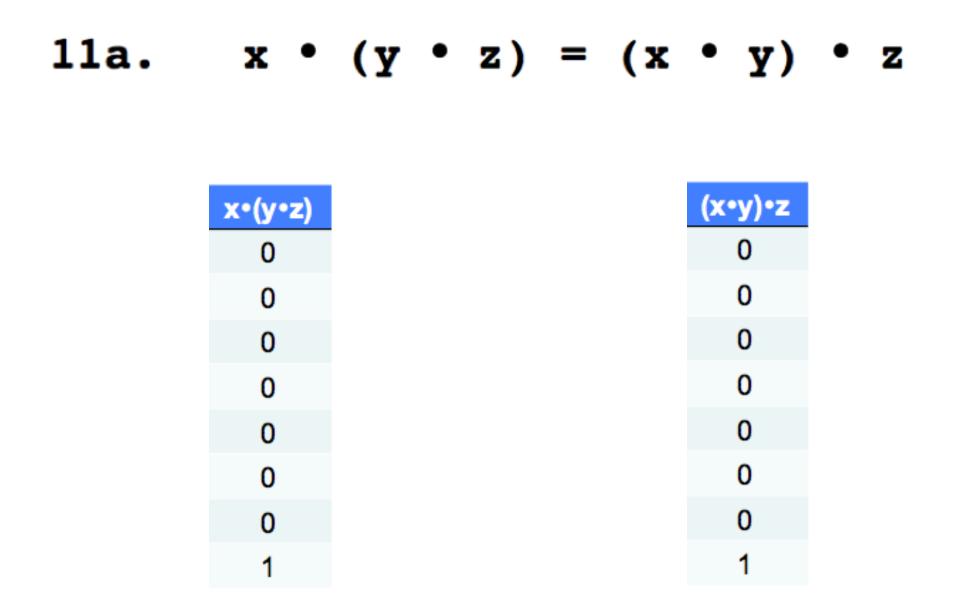
X	У	z	X	y•z	x•(y•z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

X	У	z	X	y•z	x∙(y∙z)
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

X	У	z	X	y•z	x∙(y∙z)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	1

X	У	z	х•у	Z	(x•y)•z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the right-hand side



These two are identical, which concludes the proof.

11b. x + (y + z) = (x + y) + z

X	У	Z	X	y + z	x+(y+z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

11b. x + (y + z) = (x + y) + z

X	У	z	X	y + z	x+(y+z)
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	1	

11b. x + (y + z) = (x + y) + z

X	У	z	X	y + z	x+(y+z)
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

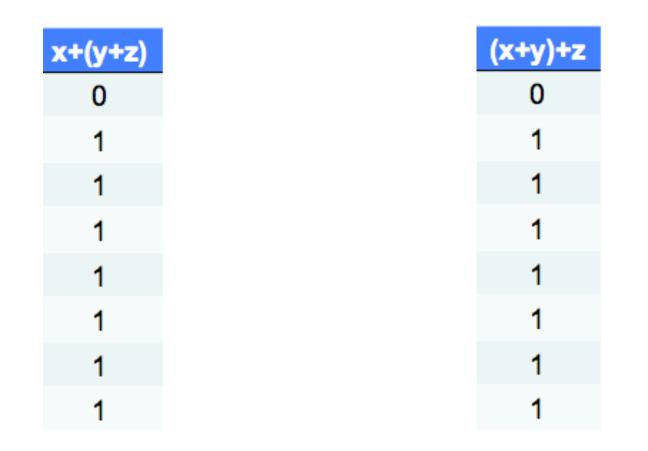
Truth table for the left-hand side

11b. x + (y + z) = (x + y) + z

X	У	Z	x + y	z	(x+y)+z
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

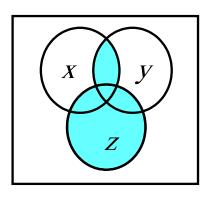
Truth table for the right-hand side

11b. x + (y + z) = (x + y) + z



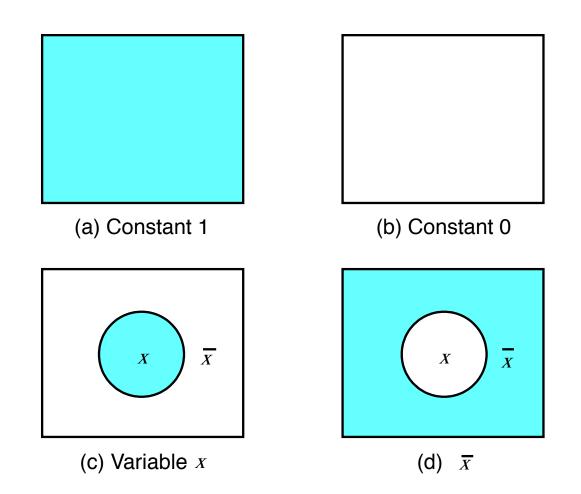
These two are identical, which concludes the proof.

The Venn Diagram Representation



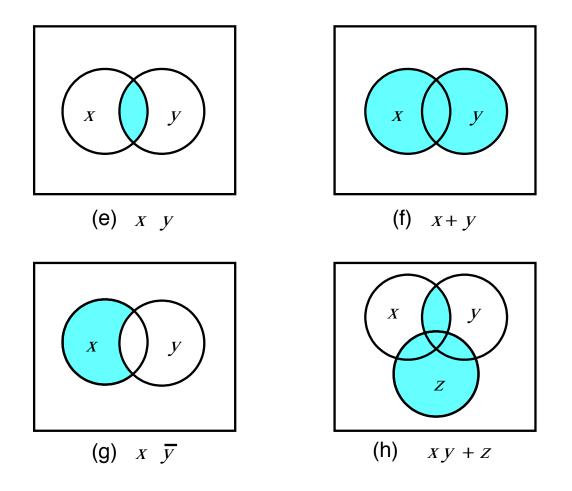
XY + Z

Venn Diagram Basics



[Figure 2.14 from the textbook]

Venn Diagram Basics



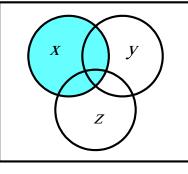
[Figure 2.14 from the textbook]

Let's Prove the Distributive Properties

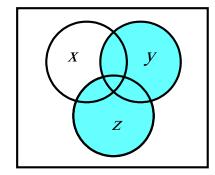
12a. $x \cdot (y + z) = x \cdot y + x \cdot z$ 12b. $x + y \cdot z = (x + y) \cdot (x + z)$

12a.

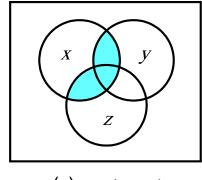
 $x \cdot (y + z) = x \cdot y + x \cdot z$



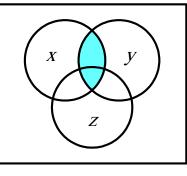
(a) x



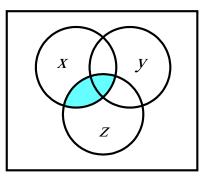
(b)
$$y + z$$



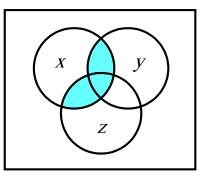
(C) X (y+Z)



(d) *x y*



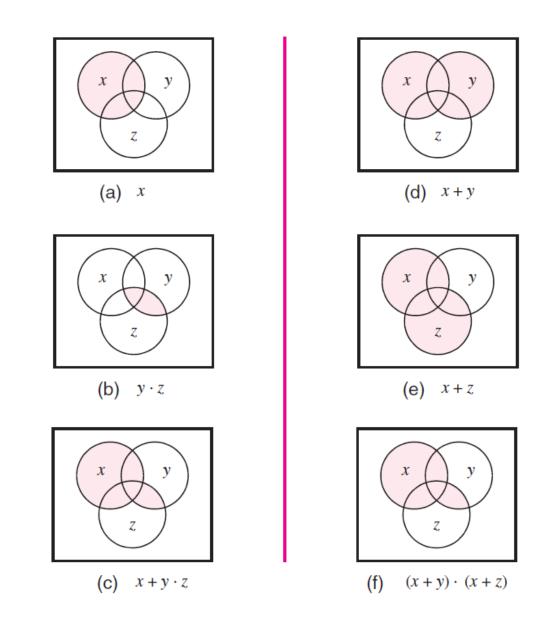
(e) *x z*



(f) XY + XZ

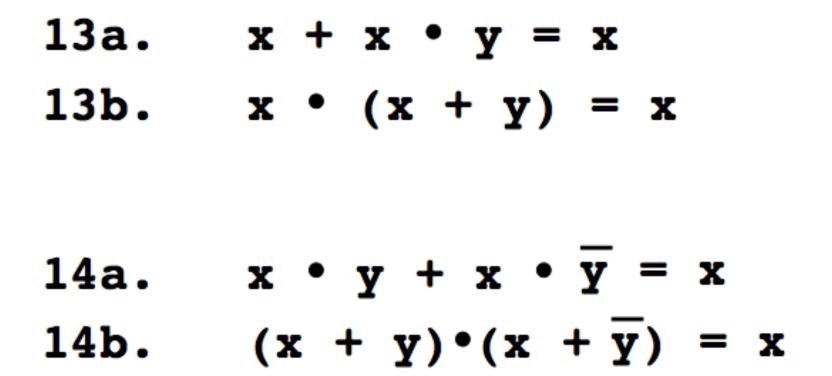
[Figure 2.15 from the textbook]

12b. $x + y \cdot z = (x + y) \cdot (x + z)$

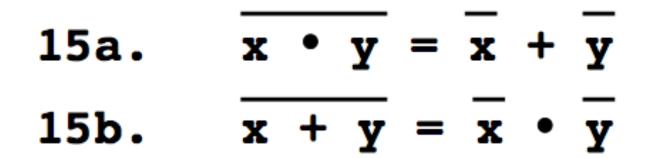


[Figure 2.17 from the textbook]

Try to prove these ones at home



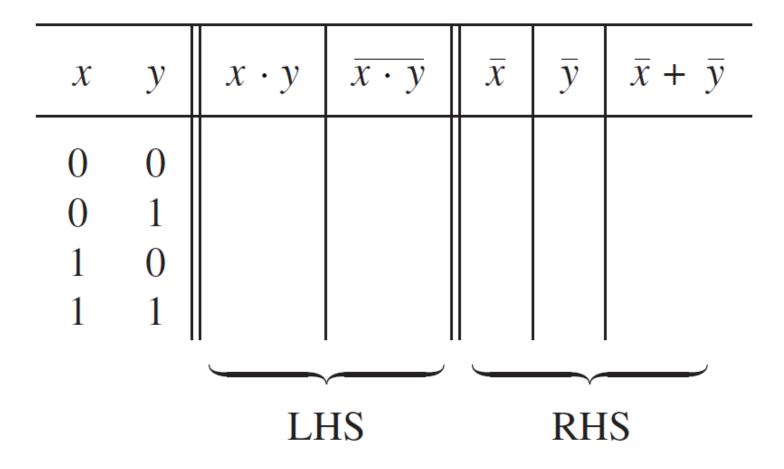
DeMorgan's Theorem



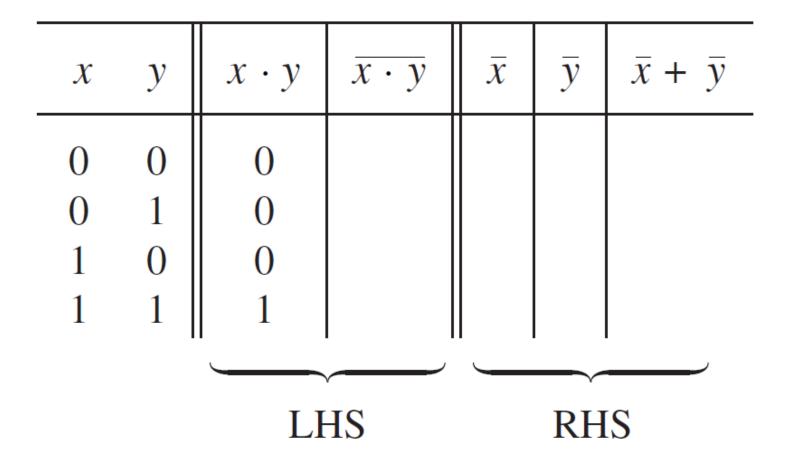
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

[Figure 2.13 from the textbook]

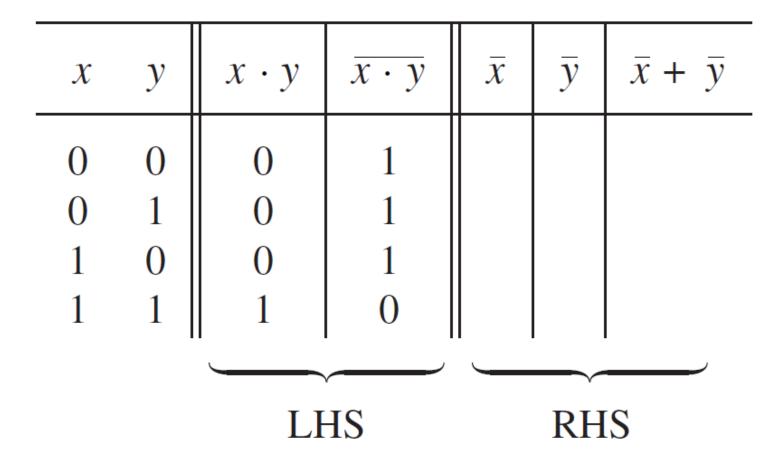
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$



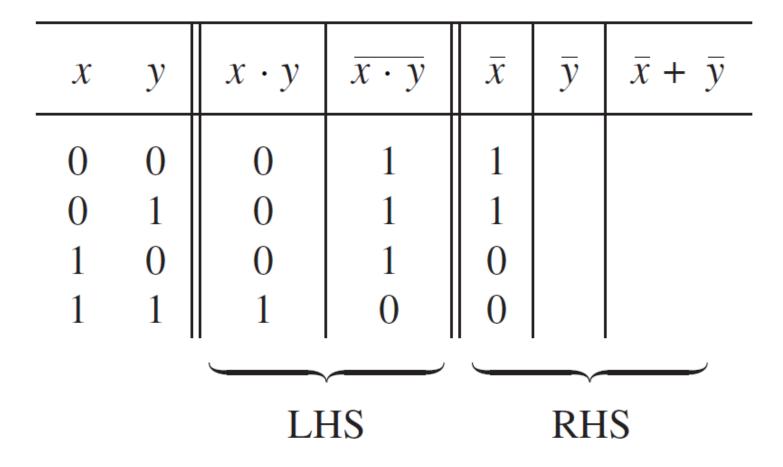
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$



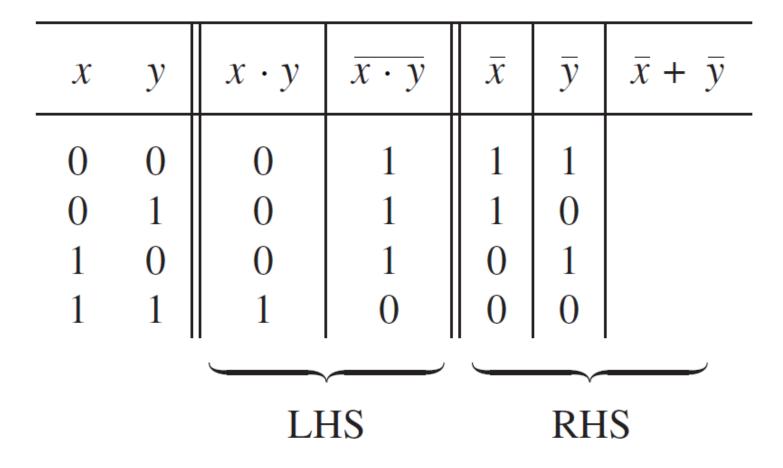
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$



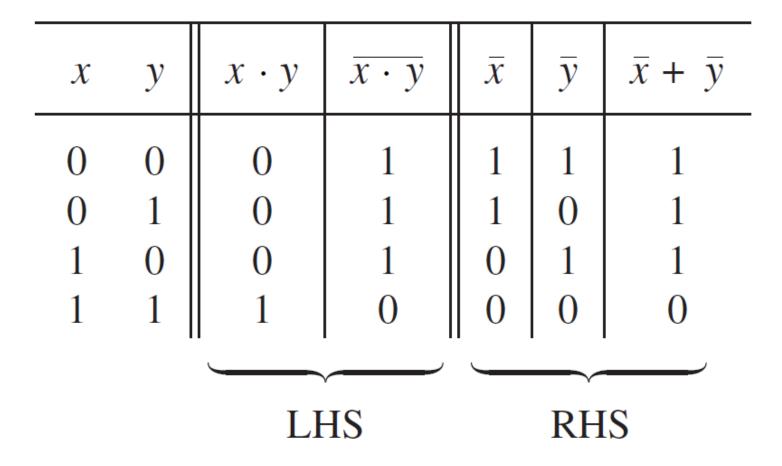
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$



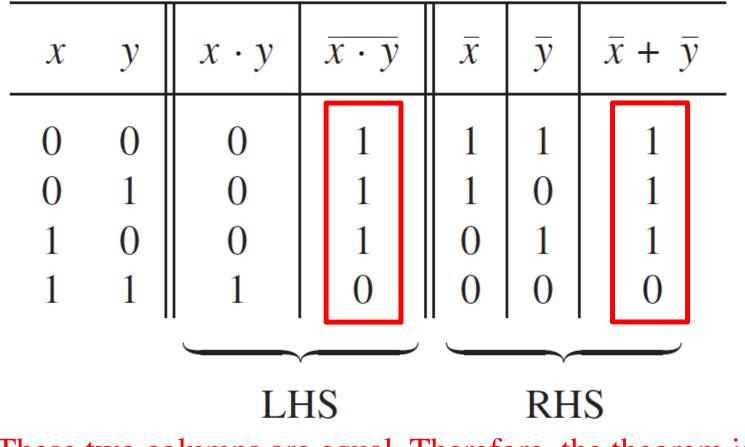
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$



15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$



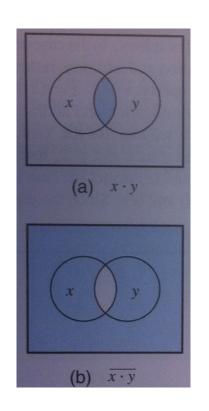
15a.
$$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$$

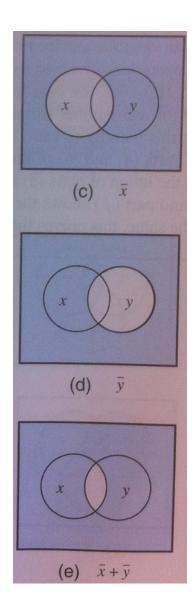


These two columns are equal. Therefore, the theorem is true.

Alternative proof using Venn Diagrams

15a. $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$

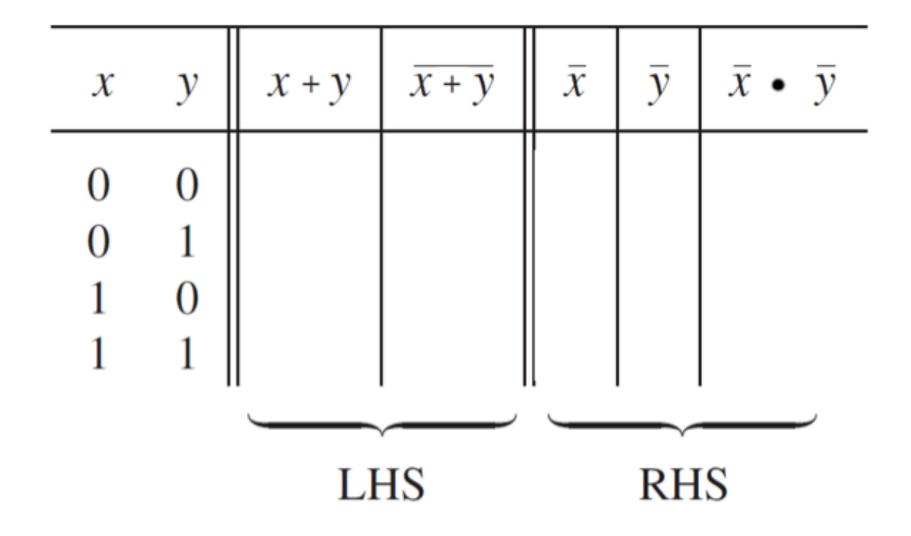




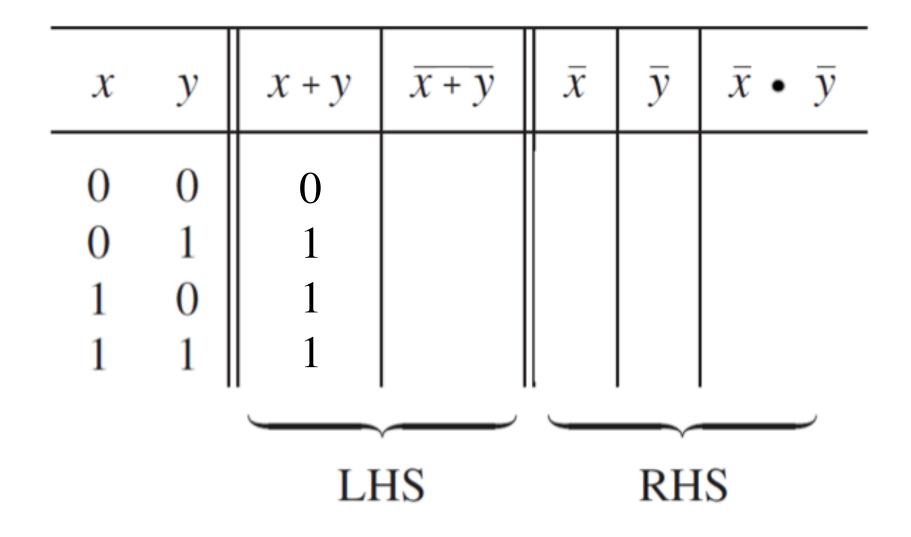
[Figure 2.18 from the textbook]

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

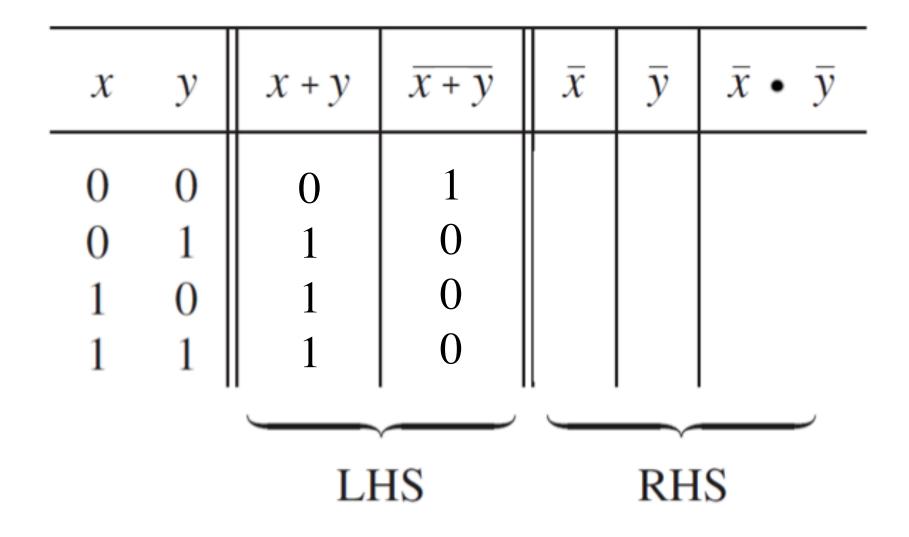
15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$



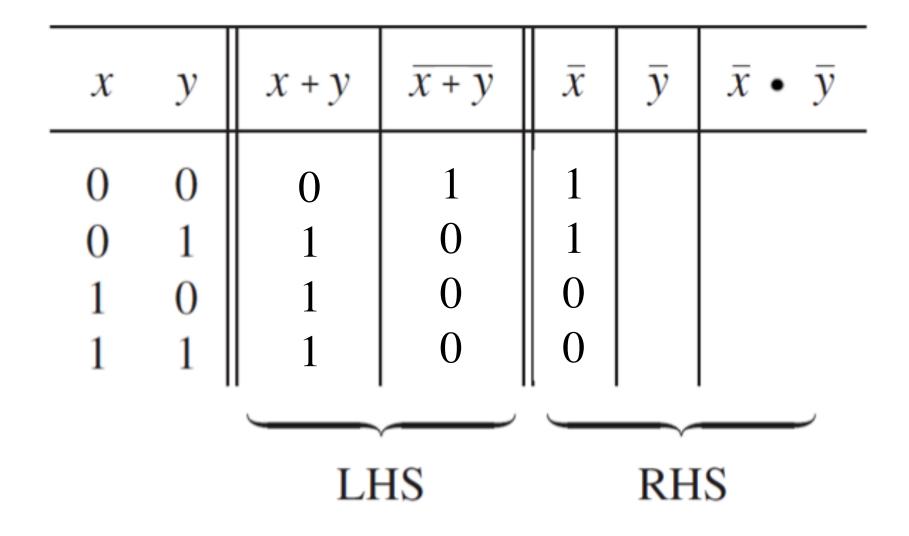
15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$



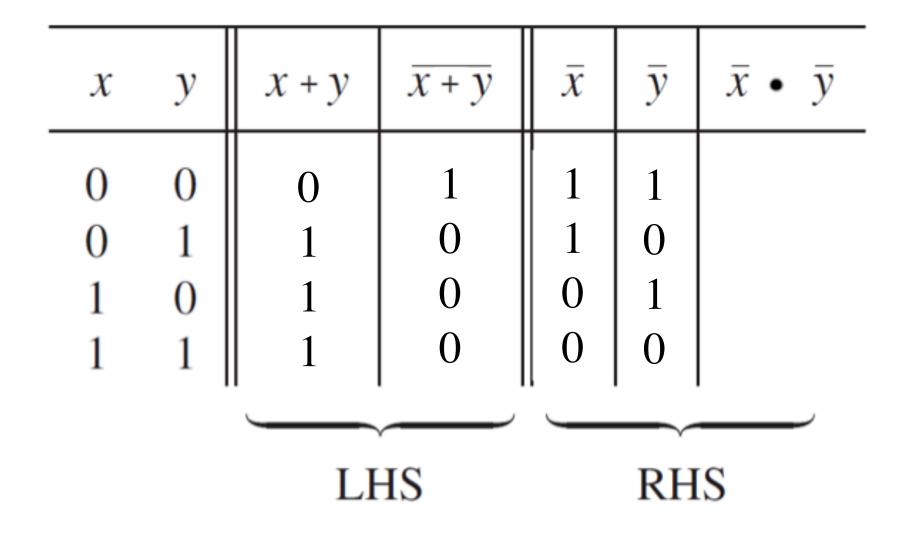
15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$



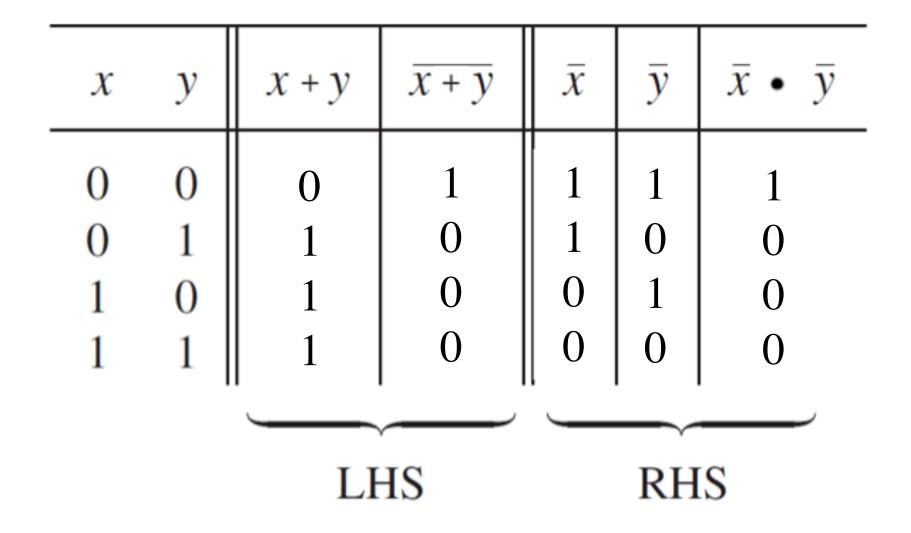
15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$



15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

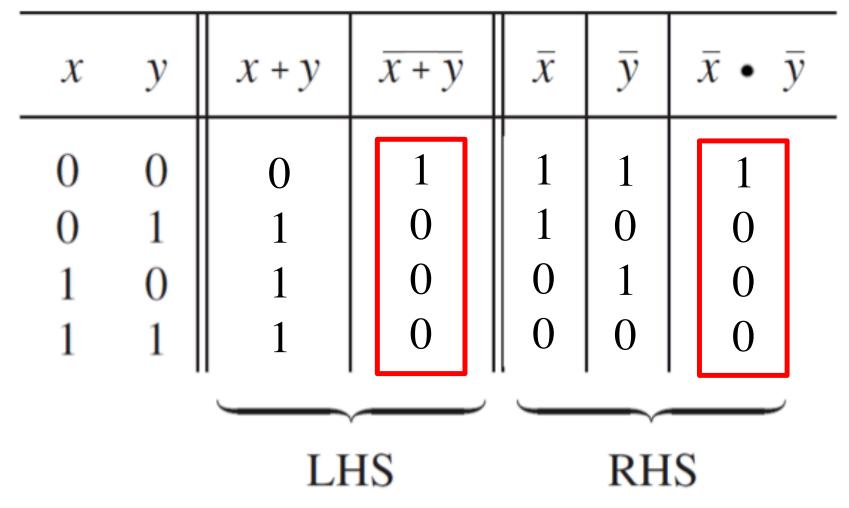


15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$



15b. $\overline{x + y} = \overline{x} \cdot \overline{y}$

These two columns are equal, so the theorem is true.



Try to prove these ones at home

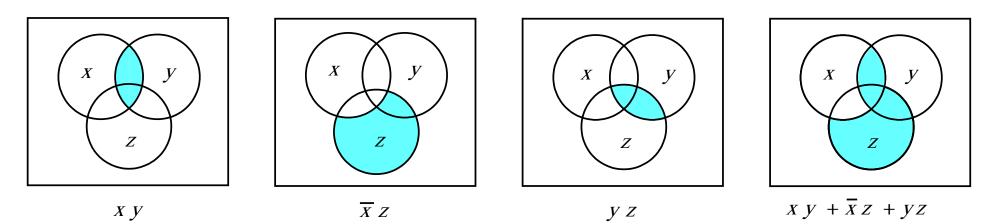
- 16a. $x + \overline{x} \cdot y = x + y$
- 16b. $x \cdot (\overline{x} + y) = x \cdot y$

17a. $x \cdot y + y \cdot z + x \cdot z = x \cdot y + x \cdot z$ 17b. $(x+y) \cdot (y+z) \cdot (\overline{x+z}) = (x+y) \cdot (\overline{x+z})$

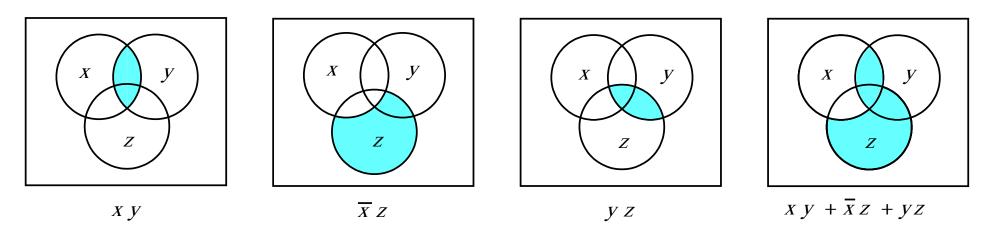
Venn Diagram Example Proof of Property 17a

17a. $x^{\bullet}y + y^{\bullet}z + x^{\bullet}z = x^{\bullet}y + x^{\bullet}z$

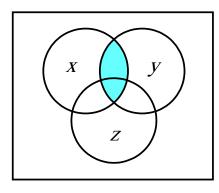
Left-Hand Side

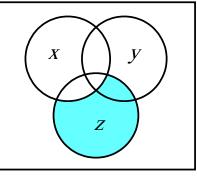


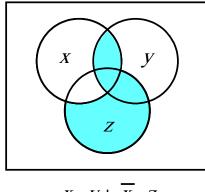
Left-Hand Side



Right-Hand Side

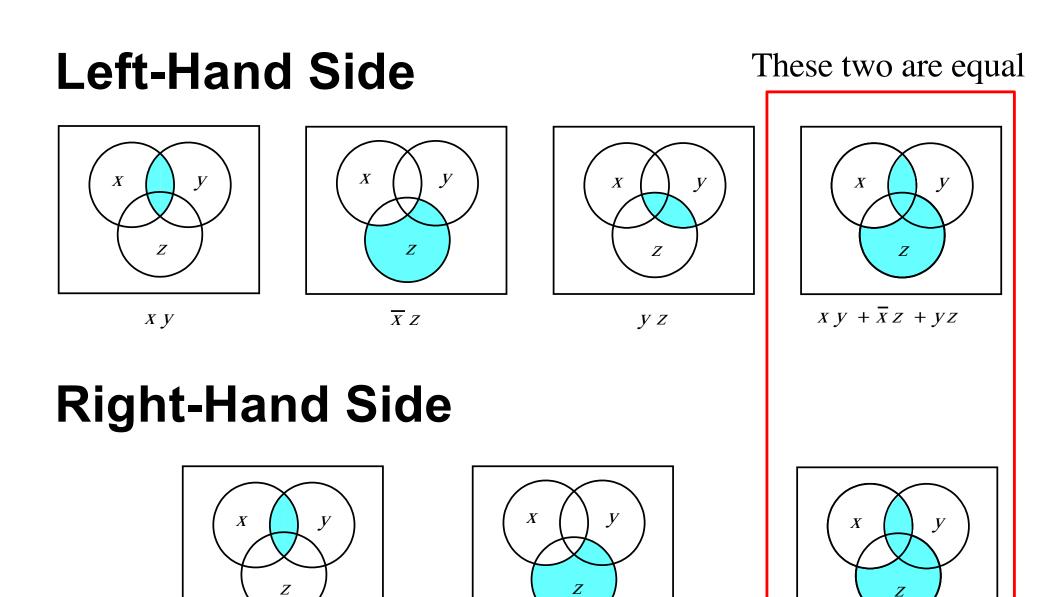






 $x \quad y + \overline{x} \quad z$

[Figure 2.16 from the textbook]



 \overline{X} Z

 $X \quad Y$

 $x y + \overline{x} z$

Questions?

THE END