

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic

lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW2 is due on Wednesday Sep 8 @ 4pm
- Please write clearly on the first page the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Administrative Stuff

- Next week we will start with Lab2
- Read the lab assignment and do the prelab at home.
- Complete the prelab on paper before you go to the lab. Otherwise you'll lose $\mathbf{2 0 \%}$ of your grade for that lab.

Quick Review

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Truth Table for NOT

x	\bar{x}
0	1
1	0

Truth Table for AND

x_{1}	x_{2}	$x_{1} \cdot x_{2}$
0	0	0
0	1	0
1	0	0
1	1	1

Truth Table for OR

Truth Tables for AND and OR

[Figure 2.6b from the textbook]

Boolean Algebra

George Boole 1815-1864

- An algebraic structure consists of
- a set of elements $\{0,1\}$
- binary operators $\{+, \bullet\}$
- and a unary operator $\left\{\right.$ ' \} or $\left\{\begin{array}{l} \\ \\ \text { \} or }\{\sim\}\end{array}\right.$
- Introduced by George Boole in 1854
- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Different Notations for Negation

- All three of these mean "negate x "
- \mathbf{x}^{\prime}
- $\overline{\mathbf{x}}$
- ~ \mathbf{X}

Operator Precedence

- In regular arithmetic and algebra, multiplication takes precedence over addition.
- This is also true in Boolean algebra.
- For example, $x+y \cdot z$ means multiply y by z and add the product to x.
- In other words, $\mathbf{x + y \cdot z}$ is equal to $\mathbf{x + (y \cdot z)}$, not $(x+y) \cdot z$.

The multiplication dot is optional

- In regular algebra, the multiplication operator is often omitted to shorten the equations.
- This is also true in Boolean algebra.
- Both of these mean the same thing:

$$
x y \quad \text { is equal to } \quad x \cdot y
$$

Operator Precedence

(three different ways to write the same)

$$
\begin{gathered}
x_{1} \cdot x_{2}+\bar{x}_{1} \cdot \bar{x}_{2} \\
\left(x_{1} \cdot x_{2}\right)+\left(\left(\bar{x}_{1}\right) \cdot\left(\bar{x}_{2}\right)\right) \\
x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}
\end{gathered}
$$

Operator Precedence

- Negation of a single variable takes precedence over multiplication of that variable with another variable.
- For example,

A B means negate A first and then multiply A by B

Operator Precedence

- However, a horizontal bar over a product of two variables means that the negation is performed after the product is computed.
- For example,

A B means multiply A and B and then negate

Operator Precedence

- Note that these two expressions are different:
$\overline{A B}$ is not equal to $\bar{A} \bar{B}$

A B means multiply A and B and then negate
$\bar{A} \bar{B}$ means negate A and B separately and then multiply

Operator Precedence

- Note that these two expressions are different:
$\overline{A B}$ is not equal to $\bar{A} \bar{B}$

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A B}}$
0	0	1
0	1	1
1	0	1
1	1	0

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}} \overline{\mathbf{B}}$
0	0	1
0	1	0
1	0	0
1	1	0

DeMorgan's Theorem

$$
\begin{array}{ll}
\text { 15a. } & \overline{x \cdot y}=\bar{x}+\bar{y} \\
\text { 15b. } & \overline{x+y}=\bar{x} \cdot \bar{y}
\end{array}
$$

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	$\underbrace{}_{\text {LHS }}$	$\underbrace{}_{\text {RHS }}$	0
0	0					

Proof of DeMorgan's theorem

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

These two columns are equal. Therefore, the theorem is true.

How to remember DeMorgan's theorem

$\overline{\mathrm{X} \bullet \mathrm{y}} \quad$| start with the |
| :--- |
| left-hand side |

How to remember DeMorgan's theorem

divide the bar
into 3 equal parts

How to remember DeMorgan's theorem

erase the
middle segment

How to remember DeMorgan's theorem

$\bar{x}+\bar{y}$

change the
product to a sum

How to remember DeMorgan's theorem

$\bar{x}+\bar{y}$

this is the
right-hand side

How to remember DeMorgan's theorem

Proof of the other DeMorgan's theorem

15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

Proof of the other DeMorgan's theorem

15b. $\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}}$

These two columns are equal. Therefore, the theorem is true.

A Short Digression

The 2D Plane

The unit vectors \mathbf{i} and \mathbf{j} form a basis

- Any point in the 2D plane can be represented as a linear combination of these two vectors.
- In 3D we have $\mathbf{i}, \quad j$, and k

$$
\left.\begin{array}{l}
i=(1, \\
j=(0,
\end{array}\right)
$$

Note that there is only one 1 in each.

Basis Functions
 (for two variables)

Four Basis Functions

\mathbf{x}	\mathbf{y}	\mathbf{f}_{00}
0	0	1
0	1	0
1	0	0
1	1	0

$\mathrm{f}_{00}(\mathrm{x}, \mathrm{y})$

\mathbf{x}	\mathbf{y}	\mathbf{f}_{01}
0	0	0
0	1	1
1	0	0
1	1	0

$f_{01}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{f}_{10}
0	0	0
0	1	0
1	0	1
1	1	0

$f_{10}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{f}_{11}
0	0	0
0	1	0
1	0	0
1	1	1

$f_{11}(x, y)$

Four Basis Functions

$\mathrm{f}_{00}(\mathrm{x}, \mathrm{y})$

\mathbf{x}	\mathbf{y}	\mathbf{f}_{01}
0	0	0
0	1	1
1	0	0
1	1	0

$f_{01}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{f}_{10}
0	0	0
0	1	0
1	0	1
1	1	0

$f_{10}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{f}_{11}
0	0	0
0	1	0
1	0	0
1	1	1

$f_{11}(x, y)$

Four Basis Functions

\mathbf{x}	\mathbf{y}	$\mathbf{f}_{00}(\mathbf{x}, \mathbf{y})$	$\mathbf{f}_{01}(\mathbf{x}, \mathbf{y})$	$\mathbf{f}_{10}(\mathbf{x}, \mathbf{y})$	$\mathbf{f}_{11}(\mathbf{x}, \mathbf{y})$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Four Basis Functions

\mathbf{x}	\mathbf{y}	$\overline{\mathrm{x}} \overline{\mathbf{y}}$	$\overline{\mathrm{x}} \mathrm{y}$	$\mathrm{x} \overline{\mathrm{y}}$	xy
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Circuits for the four basis functions

$f_{10}(x, y)=x \bar{y}$

$$
f_{11}(x, y)=x y
$$

Four Basis Functions

\mathbf{x}	\mathbf{y}	\mathbf{f}_{00}
0	0	1
0	1	0
1	0	0
1	1	0

\mathbf{x}	\mathbf{y}	\mathbf{f}_{01}
0	0	0
0	1	1
1	0	0
1	1	0

\mathbf{x}	\mathbf{y}	\mathbf{f}_{10}
0	0	0
0	1	0
1	0	1
1	1	0

\mathbf{x}	\mathbf{y}	\mathbf{f}_{11}
0	0	0
0	1	0
1	0	0
1	1	1

$f_{00}(x, y)=\bar{x} \bar{y} \quad f_{01}(x, y)=\bar{x} y \quad f_{10}(x, y)=x \bar{y} \quad f_{11}(x, y)=x y$

Function Synthesis Example (with two variables)

Synthesize the Following Function

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=1 \bullet \mathrm{f}_{00}+1 \bullet \mathrm{f}_{01}+0 \bullet \mathrm{f}_{10}+1 \bullet \mathrm{f}_{11}
$$

2) Write the expressions for all four

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathrm{f}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{00}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{01}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{10}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\underbrace{1 \bullet \mathrm{f}_{00}}+\underbrace{1 \bullet \mathrm{f}_{01}}+\underbrace{0 \bullet \mathrm{f}_{10}}+\underbrace{1 \bullet \mathrm{f}_{11}}
$$

2) Write the expressions for all four

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathrm{f}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{00}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{01}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{10}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathrm{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\underbrace{1 \bullet \mathrm{f}_{00}}_{\bar{x}_{1} \bar{x}_{2}}+\underbrace{1 \bullet \mathrm{f}_{01}}_{\bar{x}_{1} x_{2}}+\underbrace{0 \bullet \mathrm{f}_{10}}_{0}+\underbrace{1 \bullet \mathrm{f}_{11}}_{x_{1} x_{2}}
$$

3) Then just add them together

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathrm{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\underbrace{1 \bullet \mathrm{f}_{00}}+\underbrace{1 \bullet \mathrm{f}_{01}}+\underbrace{0 \bullet \mathrm{f}_{10}}+\underbrace{1 \bullet \mathrm{f}_{11}}
$$

3) Then just add them together

\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{00}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{01}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{10}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$	$\mathbf{f}_{11}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

A function to be synthesized

[Figure 2.19 from the textbook]

Let's look at it row by row. How can we express the last row?

Let's look at it row by row. How can we express the last row?

Let's look at it row by row. How can we express the last row?

What about this row?

What about this row?

What about this row?

What about the first row?

What about the first row?

What about the first row?

Finally, what about the zero?

Putting it all together

Let's verify that this circuit implements correctly the target truth table

Let's verify that this circuit implements correctly the target truth table

Putting it all together

Canonical Sum-Of-Products (SOP)

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}
$$

[Figure 2.20a from the textbook]

Summary of This Procedure

- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if $x_{i}=1$ enter it as x_{i}, otherwise use \bar{x}_{i}
- Sum all of these products (OR gate) to get the function

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}
$$

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2} \quad \begin{aligned}
& \text { replicate } \\
& \text { this term }
\end{aligned}
$$

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}
$$

group
these terms

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+\bar{x}_{1} x_{2} \\
& f\left(x_{1}, x_{2}\right)=\left(x_{1}+\bar{x}_{1}\right) x_{2}+\bar{x}_{1}\left(\bar{x}_{2}+x_{2}\right)
\end{aligned}
$$

Simplification Steps

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2} \\
& f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+\bar{x}_{1} x_{2} \\
& \quad \text { These two terms are trivially equal to } 1 \\
& f\left(x_{1}, x_{2}\right)=\left(x_{1}+\bar{x}_{1}\right) x_{2}+\bar{x}_{1}\left(\bar{x}_{2}+x_{2}\right) \\
& f\left(x_{1}, x_{2}\right)=1 \cdot x_{2}+\bar{x}_{1} \cdot 1
\end{aligned}
$$

Simplification Steps

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+\bar{x}_{1} x_{2}
$$

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+\bar{x}_{1}\right) x_{2}+\bar{x}_{1}\left(\bar{x}_{2}+x_{2}\right)
$$

Drop the 1's

$$
f\left(x_{1}, x_{2}\right)=1 \cdot x_{2}+\bar{x}_{1} \cdot 1
$$

$$
f\left(x_{1}, x_{2}\right)=x_{2}+\bar{x}_{1}
$$

Minimal-cost realization

$f\left(x_{1}, x_{2}\right)=x_{2}+\bar{x}_{1}$

[Figure 2.20b from the textbook]

Two implementations for the same function

(a) Canonical sum-of-products

(b) Minimal-cost realization
[Figure 2.20 from the textbook]

Basis Functions
 (for three variables)

Eight Basis Functions

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}_{000}	\mathbf{f}_{001}	\mathbf{f}_{010}	\mathbf{f}_{011}	\mathbf{f}_{100}	\mathbf{f}_{101}	\mathbf{f}_{110}	\mathbf{f}_{111}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Eight Basis Functions

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{f}_{000}	\mathbf{f}_{001}	\mathbf{f}_{010}	\mathbf{f}_{011}	\mathbf{f}_{100}	\mathbf{f}_{101}	\mathbf{f}_{110}	\mathbf{f}_{111}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Function Synthesis Example (with three variables)

Let's look at another problem

89
(a) Conveyor and sensors

s_{1}	s_{2}	s_{3}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(b) Truth table
[Figure 2.21 from the textbook]

Let's look at another problem

s_{1}	s_{2}	s_{3}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

[Figure 2.21b from the textbook]

Let's look at another problem

s_{1}	s_{2}	s_{3}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Let's look at another problem

s_{1}	s_{2}	s_{3}	f	
0	0	0	0	
0	0	1	1	$\bar{s}_{1} \bar{s}_{2} s_{3}$
0	1	0	0	
0	1	1	1	$\bar{s}_{1} s_{2} s_{3}$
1	0	0	0	
1	0	1	1	$s_{1} \bar{s}_{2} s_{3}$
1	1	0	1	$s_{1} s_{2} \bar{s}_{3}$
1	1	1	1	$s_{1} s_{2} s_{3}$

Let's look at another problem

s_{1}	s_{2}	s_{3}	f	
0	0	0	0	
$\frac{0}{0}$	0	1	1	$\bar{s}_{1} \bar{s}_{2} s_{3}$
0	1	0	0	
0	1	1	1	$\bar{s}_{1} s_{2} s_{3}$
1	0	0	0	
1	0	1	1	$s_{1} \bar{s}_{2} s_{3}$
1	1	0	1	$s_{1} s_{2} \bar{s}_{3}$
1	1	1	1	$s_{1} s_{2} s_{3}$

Let's look at another problem

s_{1}	s_{2}	s_{3}	f	
0	0	0	0	
$\overline{0}$	$\frac{0}{0}$	1	1	$\bar{s}_{1} \bar{s}_{2} s_{3}$
0	1	0	0	
$\overline{0}$	1	1	1	$\bar{s}_{1} s_{2} s_{3}$
1	0	0	0	
1	0	1	1	$s_{1} \bar{s}_{2} s_{3}$
1	1	0	1	$s_{1} s_{2} \bar{s}_{3}$
1	1	1	1	$s_{1} s_{2} s_{3}$

Let's look at another problem

s_{1}	s_{2}	s_{3}	f	
0	$\frac{0}{0}$	0	0	
$\overline{0}$	0	1	1	$\bar{s}_{1} \bar{s}_{2} s_{3}$
0	1	0	0	
$\overline{0}$	1	1	1	$\bar{s}_{1} s_{2} s_{3}$
1	0	0	0	
1	$\overline{0}$	1	1	$s_{1} \bar{s}_{2} s_{3}$
1	1	0	1	$s_{1} s_{2} \bar{s}_{3}$
1	1	1	1	$s_{1} s_{2} s_{3}$

Let's look at another problem

s_{1}	s_{2}	s_{3}	f	
0	$\frac{0}{0}$	0	0	
$\overline{0}$	0	1	1	$\bar{s}_{1} \bar{s}_{2} s_{3}$
$\frac{0}{0}$	1	0	0	
1	1	1	1	$\bar{s}_{1} s_{2} s_{3}$
1	0	0	0	
1	0	1	1	$s_{1} \bar{s}_{2} s_{3}$
1	1	$\overline{0}$	1	$s_{1} s_{2} \bar{s}_{3}$
1	1	1	1	$s_{1} s_{2} s_{3}$

Let's look at another problem

s_{1}	s_{2}	s_{3}	f	
0	0	0	0	
0	0	1	1	$\bar{s}_{1} \bar{s}_{2} s_{3}$
0	1	0	0	
0	1	1	1	$\bar{s}_{1} s_{2} s_{3}$
1	0	0	0	
1	0	1	1	$s_{1} \bar{s}_{2} s_{3}$
1	1	0	1	$s_{1} s_{2} \bar{s}_{3}$
1	1	1	1	$s_{1} s_{2} s_{3}$

$f=\bar{s}_{1} \bar{s}_{2} s_{3}+\bar{s}_{1} s_{2} s_{3}+s_{1} \bar{s}_{2} s_{3}+s_{1} s_{2} \bar{s}_{3}+s_{1} s_{2} s_{3}$

Let's look at another problem (minimization)

$$
\begin{aligned}
f & =\bar{s}_{1} \bar{s}_{2} s_{3}+\bar{s}_{1} s_{2} s_{3}+s_{1} \bar{s}_{2} s_{3}+s_{1} s_{2} s_{3}+s_{1} s_{2} \bar{s}_{3}+s_{1} s_{2} s_{3} \\
& =\bar{s}_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{2}\left(\bar{s}_{3}+s_{3}\right) \\
& =\bar{s}_{1} s_{3}+s_{1} s_{3}+s_{1} s_{2} \\
& =s_{3}+s_{1} s_{2}
\end{aligned}
$$

Let's look at another problem (minimization)

$$
\begin{aligned}
f & =\bar{s}_{1} \bar{s}_{2} s_{3}+\bar{s}_{1} s_{2} s_{3}+s_{1} \bar{s}_{2} s_{3}+s_{1} s_{2} s_{3}+s_{1} s_{2} \bar{s}_{3}+s_{1} s_{2} s_{3} \\
& =\bar{s}_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{3}\left(\bar{s}_{2}+s_{2}\right)+s_{1} s_{2}\left(\bar{s}_{3}+s_{3}\right) \\
& =\bar{s}_{1} s_{3}+s_{1} s_{3}+s_{1} s_{2} \\
& =s_{3}+s_{1} s_{2}
\end{aligned}
$$

Minterms and Maxterms

Row number	x_{1}	x_{2}	Minterm	Maxterm
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	$M_{0}=x_{1}+x_{2}$
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	$M_{1}=x_{1}+\overline{x_{2}}$
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	$M_{2}=\bar{x}_{1}+x_{2}$
3	1	1	$m_{3}=x_{1} x_{2}$	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$

Minterms and Maxterms

Row number	x_{1}	x_{2}	Minterm	Maxterm
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	$M_{0}=x_{1}+x_{2}$
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	$M_{1}=x_{1}+\overline{x_{2}}$
2	1	0	$m_{2}=x_{1} \overline{x_{2}}$	$M_{2}=\bar{x}_{1}+x_{2}$
3	1	1	$m_{3}=x_{1} x_{2}$	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$

Use these for	Use these for
Sum-of-Products	Product-of-Sums
Minimization	Minimization
(1's of the function)	(0's of the function)

Sum-of-Products Form
 (uses the ones of the function)

Sum-of-Products Form
 (for the AND logic function)

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	0
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	0
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form
 (for the AND logic function)

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	0
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	0
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form (for the AND logic function)

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	0
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	0
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

$$
f\left(x_{1}, x_{2}\right)=m_{3}=x_{1} x_{2}
$$

(In this case there is just one product and there is no need for a sum)

Another Example

Sum-of-Products Form

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	1
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	1
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	1
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	1
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

Sum-of-Products Form

Row number	x_{1}	x_{2}	Minterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2}$	1
1	0	1	$m_{1}=\bar{x}_{1} x_{2}$	1
2	1	0	$m_{2}=x_{1} \bar{x}_{2}$	0
3	1	1	$m_{3}=x_{1} x_{2}$	1

$$
\begin{aligned}
f & =m_{0} \cdot 1+m_{1} \cdot 1+m_{2} \cdot 0+m_{3} \cdot 1 \\
& =m_{0}+m_{1}+m_{3} \\
& =\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} x_{2}+x_{1} x_{2}
\end{aligned}
$$

Product-of-Sums Form

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

Product-of-Sums Form (for the OR logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

Product-of-Sums Form (for the OR logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

$$
f\left(x_{1}, x_{2}\right)=M_{0}=x_{1}+x_{2}
$$

(In this case there is just one sum and there is no need for a product)

Another Example

Product-of-Sums Form
 (for this logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

Product-of-Sums Form
 (for this logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

Product-of-Sums Form
 (for this logic function)

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1

$$
f\left(x_{1}, x_{2}\right)=M_{0} \cdot M_{2}=\left(x_{1}+x_{2}\right) \cdot\left(\bar{x}_{1}+x_{2}\right)
$$

Yet Another Example

Product-of-Sums Form

We need to minimize using the zeros of the function f . But let's first minimize the inverse of f, i.e., $\overline{\mathrm{f}}$.

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

Product-of-Sums Form

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

Product-of-Sums Form

Row number	x_{1}	x_{2}	Maxterm	$f\left(x_{1}, x_{2}\right)$	$\bar{f}\left(x_{1}, x_{2}\right)$
0	0	0	$M_{0}=x_{1}+x_{2}$	1	0
1	0	1	$M_{1}=x_{1}+\overline{x_{2}}$	1	0
2	1	0	$M_{2}=\overline{x_{1}}+x_{2}$	0	1
3	1	1	$M_{3}=\overline{x_{1}}+\overline{x_{2}}$	1	0

$$
\begin{aligned}
\overline{\bar{f}}=f & =\overline{x_{1} \bar{x}_{2}} & \bar{f}\left(x_{1}, x_{2}\right) & =m_{2} \\
& =\bar{x}_{1}+x_{2} & & =x_{1} \bar{x}_{2}
\end{aligned}
$$

$f=\bar{m}_{2}=M_{2}$

Examples with three-variable functions

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

[Figure 2.22 from the textbook]

A three-variable function

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

[Figure 2.23 from the textbook]

Sum-of-Products (SOP)

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products (SOP)

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}$

Sum-of-Products (SOP)

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$f\left(x_{1}, x_{2}, x_{3}\right)=\bar{x}_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}$

$$
\begin{aligned}
f & =\left(\bar{x}_{1}+x_{1}\right) \bar{x}_{2} x_{3}+x_{1}\left(\bar{x}_{2}+x_{2}\right) \bar{x}_{3} \\
& =1 \cdot \bar{x}_{2} x_{3}+x_{1} \cdot 1 \cdot \bar{x}_{3} \\
& =\bar{x}_{2} x_{3}+x_{1} \bar{x}_{3}
\end{aligned}
$$

Sum-of-products realization of this function

[Figure 2.24a from the textbook]

A three-variable function

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

[Figure 2.23 from the textbook]

Product-of-Sums (POS)

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Product-of-Sums (POS)

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
\begin{aligned}
f & =\overline{m_{0}+m_{2}+m_{3}+m_{7}} \\
& =\bar{m}_{0} \cdot \bar{m}_{2} \cdot \bar{m}_{3} \cdot \bar{m}_{7} \\
& =M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{7} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}\right)
\end{aligned}
$$

Product-of-Sums (POS)

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
\begin{gathered}
f=\left(\left(x_{1}+x_{3}\right)+x_{2}\right)\left(\left(x_{1}+x_{3}\right)+\bar{x}_{2}\right)\left(x_{1}+\left(\bar{x}_{2}+\bar{x}_{3}\right)\right)\left(\bar{x}_{1}+\left(\bar{x}_{2}+\bar{x}_{3}\right)\right) \\
f=\left(x_{1}+x_{3}\right)\left(\bar{x}_{2}+\bar{x}_{3}\right)
\end{gathered}
$$

Product-of-sums realization of this function

[Figure 2.24b from the textbook]

Two realizations of this function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization
[Figure 2.24 from the textbook]

Shorthand Notation for SOP

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum\left(m_{1}, m_{4}, m_{5}, m_{6}\right)
$$

or

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(1,4,5,6)
$$

Shorthand Notation for POS

Row number	x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\Pi\left(M_{0}, M_{2}, M_{3}, M_{7}\right)
$$

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\Pi M(0,2,3,7)
$$

Shorthand Notation

- Sum-of-Products (SOP)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum\left(m_{1}, m_{4}, m_{5}, m_{6}\right)
$$

or

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(1,4,5,6)
$$

- Product-of-Sums (POS)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\Pi\left(M_{0}, M_{2}, M_{3}, M_{7}\right)
$$

or

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\Pi M(0,2,3,7)
$$

The Cost of a Circuit

- Count all gates
- Count all inputs/wires to the gates
- Add the two partial counts. That is the cost.

What is the cost of each circuit?

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

What is the cost of this circuit?

Questions?

THE END

