

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is due on Monday Sep 13 @ 4pm
- Please write clearly on the first page the following three things:
- Your First and Last Name
- Your Student ID Number
- Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Quick Review

Axioms of Boolean Algebra

1 a.
$0-0=0$
1b. $\quad 1+1=1$

2a. 1 - $1=1$
2b. $\quad 0+0=0$

3a. $0 \cdot 1=1 \cdot 0=0$
3b.
$1+0=0+1=1$

4a. If $x=0$, then $\bar{x}=1$
4b. If $x=1$, then $\bar{x}=0$

The Three Basic Logic Gates

NOT gate

AND gate

OR gate

Single-Variable Theorems

5a. $x \cdot 0=0$
5b. $x+1=1$

6a. $x \cdot 1=x$
6b. $x+0=x$

7a. x - $x=x$
7b. $\quad x+x=x$

8a. $x \cdot \bar{x}=0$
8b. $x+\bar{x}=1$
9. $\overline{\bar{x}}=\mathbf{x}$

Two- and Three-Variable Properties

10a.	$x \cdot y=y \bullet x$
10b.	$x+y=y+x$

Commutative

11a. $x \cdot(y \cdot z)=(x \bullet y) \cdot z$ Associative
11b. $\quad x+(y+z)=(x+y)+z$

12a. $x \cdot(y+z)=x^{\bullet} y+x^{\bullet} z \quad$ Distributive
12b. $x+y \cdot z=(x+y)^{\bullet}(x+z)$

13a.
$x+x \cdot y=x$
Absorption
13b.
$x \cdot(x+y)=x$

Two- and Three-Variable Properties

14a.
$\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \overline{\mathbf{y}}=\mathbf{x}$
14b.
$(x+y)^{\bullet}(x+\bar{y})=x$

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$
15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$
Combining

DeMorgan's
theorem

16a. $\quad x+\bar{x} \cdot y=x+y$
16b. $\quad x^{\bullet}(\bar{x}+y)=x^{\bullet} y$

17a. $\quad x^{\bullet} y+y^{\bullet} z+\bar{x} \bullet z=x^{\bullet} y+\bar{x} \cdot z$
17b.

$$
(x+y) \cdot(y+z) \cdot(\bar{x}+z)=(x+y) \bullet(\bar{x}+z)
$$

Consensus

NAND Gate

NOR Gate

Why do we need two more gates?

They can be implemented with fewer transistors.

Each of the new gates can be used to implement the three basic logic gates: NOT, AND, OR.

Implications

Any Boolean function can be implemented with only NAND gates!

Implications

Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!

Minterms
(for two variables)

The Four Minterms

\mathbf{x}	\mathbf{y}	\mathbf{m}_{0}
0	0	1
0	1	0
1	0	0
1	1	0

$m_{0}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{m}_{1}
0	0	0
0	1	1
1	0	0
1	1	0

$m_{1}(x, y)$

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{2}}$
0	0	0
0	1	0
1	0	1
1	1	0

$m_{2}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{m}_{3}
$\mathbf{0}$	0	0
0	1	0
1	0	0
1	1	1

$m_{3}(x, y)$

The Four Minterms

\mathbf{x}	\mathbf{y}	\mathbf{m}_{0}
0	0	1
0	1	0
1	0	0
1	1	0

$m_{0}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{m}_{1}
0	0	0
0	1	1
1	0	0
1	1	0

$m_{1}(x, y)$

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{2}}$
0	0	0
0	1	0
1	0	1
1	1	0

$m_{2}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{m}_{3}
0	0	0
0	1	0
1	0	0
1	1	1

$m_{3}(x, y)$

The Four Minterms

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{0}(x, y)$	$m_{1}(x, y)$	$m_{2}(x, y)$	$m_{3}(x, y)$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

The Four Minterms

\mathbf{x}	\mathbf{y}	$\overline{\mathrm{x}} \overline{\mathbf{y}}$	$\overline{\mathrm{x}} \mathrm{y}$	$\mathrm{x} \overline{\mathrm{y}}$	xy
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Circuits for the four minterms

$m_{0}(x, y)=\bar{x} \bar{y}$

$m_{1}(x, y)=\bar{x} y$

$$
m_{2}(x, y)=x \bar{y}
$$

$$
m_{3}(x, y)=x y
$$

Maxterms
(for two variables)

The Four Maxterms

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{0}}$
$\mathbf{0}$	0	0
$\mathbf{0}$	1	1
1	0	1
1	1	1

\mathbf{x}	\mathbf{y}	\mathbf{m}_{1}
$\mathbf{0}$	0	1
$\mathbf{0}$	1	0
$\mathbf{1}$	0	1
$\mathbf{1}$	1	1

$M_{1}(x, y)$

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{2}}$
0	0	1
0	1	1
1	0	0
1	1	1

$M_{2}(x, y)$

\mathbf{x}	\mathbf{y}	\mathbf{M}_{3}
$\mathbf{0}$	0	1
0	1	1
1	0	1
1	1	0

$M_{3}(x, y)$

The Four Maxterms

$M_{1}(x, y)$

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{2}}$
0	0	1
0	1	1
1	0	0
1	1	1

$M_{2}(x, y)$

\mathbf{x}	\mathbf{y}	$\mathbf{M}_{\mathbf{3}}$
0	0	1
0	1	1
1	0	1
1	1	0

$M_{3}(x, y)$

The Four Maxterms

\mathbf{x}	\mathbf{y}	$\mathbf{M}_{\mathbf{0}}(\mathbf{x}, \mathbf{y})$	$\mathbf{M}_{\mathbf{1}}(\mathbf{x}, \mathbf{y})$	$\mathbf{M}_{\mathbf{2}} \mathbf{(x , y)}$	$\mathbf{M}_{\mathbf{3}}(\mathbf{x}, \mathbf{y})$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

The Four Maxterms

\mathbf{x}	\mathbf{y}	$\mathrm{x}+\mathrm{y}$	$\mathrm{x}+\overline{\mathrm{y}}$	$\overline{\mathrm{x}}+\mathrm{y}$	$\overline{\mathrm{x}}+\overline{\mathrm{y}}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Minterms and Maxterms
 (for two variables)

Minterms and Maxterms

\mathbf{x}	\mathbf{y}	\mathbf{m}_{0}
0	0	1
0	1	0
1	0	0
1	1	0

\mathbf{x}	\mathbf{y}	\mathbf{m}_{1}
0	0	0
0	1	1
1	0	0
1	1	0

\mathbf{x}	\mathbf{y}	\mathbf{m}_{2}
0	0	0
0	1	0
1	0	1
1	1	0

\mathbf{x}	\mathbf{y}	\mathbf{m}_{3}
0	0	0
0	1	0
1	0	0
1	1	1

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{0}}$
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{x}	\mathbf{y}	\mathbf{m}_{1}
0	0	1
0	1	0
1	0	1
1	1	1

\mathbf{x}	\mathbf{y}	$\mathbf{m}_{\mathbf{2}}$
0	0	1
0	1	1
1	0	0
1	1	1

\mathbf{x}	\mathbf{y}	\mathbf{M}_{3}
0	0	1
0	1	1
1	0	1
1	1	0

Minterms and Maxterms

$$
\begin{array}{ll}
m_{0}(x, y)=\bar{x} \bar{y} & M_{0}(x, y)=x+y \\
m_{1}(x, y)=\bar{x} y & M_{1}(x, y)=x+\bar{y} \\
m_{2}(x, y)=x \bar{y} & M_{2}(x, y)=\bar{x}+y \\
m_{3}(x, y)=x y & M_{3}(x, y)=\bar{x}+\bar{y}
\end{array}
$$

Minterms
(for three variables)

The Eight Minterms

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{m}_{\mathbf{0}}$	$\mathbf{m}_{\mathbf{1}}$	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{m}_{\mathbf{3}}$	\mathbf{m}_{4}	$\mathbf{m}_{\mathbf{5}}$	\mathbf{m}_{6}	\mathbf{m}_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

The Eight Minterms

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{m}_{\mathbf{0}}$	$\mathbf{m}_{\mathbf{1}}$	$\mathbf{m}_{\mathbf{2}}$	$\mathbf{m}_{\mathbf{3}}$	\mathbf{m}_{4}	$\mathbf{m}_{\mathbf{5}}$	\mathbf{m}_{6}	\mathbf{m}_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Expressions for the Minterms

$$
\begin{aligned}
& m_{0}=\bar{x} \bar{y} \bar{z} \\
& m_{1}=\bar{x} \bar{y} z \\
& m_{2}=\bar{x} y \bar{z} \\
& m_{3}=\bar{x} y z \\
& m_{4}=x \bar{y} \bar{z} \\
& m_{5}=x \bar{y} z \\
& m_{6}=x y \bar{z} \\
& m_{7}=x y z
\end{aligned}
$$

Expressions for the Minterms

$$
\begin{array}{lllll}
0 & 0 & 0 & m_{0}=\bar{x} \bar{y} \bar{z} & \\
0 & 0 & 1 & m_{1}=\bar{x} \overline{\mathbf{y}} \mathbf{z} & \\
0 & 1 & 0 & m_{2}=\bar{x} y \bar{z} & \text { The bars coincide } \\
0 & 1 & 1 & m_{3}=\bar{x} y \mathbf{z} & \begin{array}{c}
\text { with the 0's } \\
1
\end{array} \\
0 & 0 & m_{4}=x \overline{\mathbf{y}} \bar{z} & \begin{array}{c}
\text { in the binary expansion } \\
\text { of the minterm sub-index }
\end{array} \\
1 & 0 & 1 & m_{5}=x \bar{y} \mathbf{z} & \\
1 & 1 & 0 & m_{6}=x y \bar{z} & \\
1 & 1 & 1 & m_{7}=x y y z
\end{array}
$$

Maxterms
(for three variables)

The Eight Maxterms

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{M}_{\mathbf{0}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	$\mathbf{M}_{\mathbf{5}}$	$\mathbf{M}_{\mathbf{6}}$	$\mathbf{M}_{\mathbf{7}}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

The Eight Maxterms

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{M}_{\mathbf{0}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{3}}$	$\mathbf{M}_{\mathbf{4}}$	$\mathbf{M}_{\mathbf{5}}$	$\mathbf{M}_{\mathbf{6}}$	$\mathbf{M}_{\mathbf{7}}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Expressions for the Maxterms

$$
\begin{aligned}
& M_{0}=x+y+z \\
& M_{1}=x+y+\bar{z} \\
& M_{2}=x+\bar{y}+z \\
& M_{3}=x+\bar{y}+\bar{z} \\
& M_{4}=\bar{x}+y+z \\
& M_{5}=\bar{x}+y+\bar{z} \\
& M_{6}=\bar{x}+\bar{y}+z \\
& M_{7}=\bar{x}+\bar{y}+\bar{z}
\end{aligned}
$$

Expressions for the Maxterms

$M_{0}=x+y+z$
$0 \quad 0 \quad 1$
$M_{1}=x+y+\bar{z}$
010
$M_{2}=x+\bar{y}+z$
011
$M_{3}=\mathbf{x}+\overline{\mathbf{y}}+\overline{\mathbf{z}}$
The bars coincide with the 1's in the binary expansion
$100 \quad M_{4}=\bar{x}+\mathbf{y}+\mathbf{z}$ of the maxterm sub-index

101
$M_{5}=\bar{x}+y+\bar{z}$
110
$M_{6}=\bar{x}+\bar{y}+z$
111
$M_{7}=\bar{x}+\bar{y}+\bar{z}$

Minterms and Maxterms (for three variables)

Minterms and Maxterms

$$
\begin{array}{ll}
m_{0}=\bar{x} \bar{y} \bar{z} & M_{0}=x+y+z \\
m_{1}=\bar{x} \bar{y} z & M_{1}=x+y+\bar{z} \\
m_{2}=\bar{x} y \bar{z} & M_{2}=x+\bar{y}+z \\
m_{3}=\bar{x} y z & M_{3}=x+\bar{y}+\bar{z} \\
m_{4}=x \bar{y} \bar{z} & M_{4}=\bar{x}+y+z \\
m_{5}=x \bar{y} z & M_{5}=\bar{x}+y+\bar{z} \\
m_{6}=x y \bar{z} & M_{6}=\bar{x}+\bar{y}+z \\
m_{7}=x y z & M_{7}=\bar{x}+\bar{y}+\bar{z}
\end{array}
$$

Synthesis Example

Truth table for a three-way light control

[Figure 2.31 from the textbook]

Let's Derive the SOP form

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

[Figure 2.22 from the textbook]

Let's Derive the SOP form

Let's Derive the SOP form

$$
\begin{aligned}
& \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \\
& \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \\
& \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}
\end{aligned}
$$

Let's Derive the SOP form

$$
\begin{aligned}
& \overline{\mathrm{x}}_{1} \overline{\mathrm{x}}_{2} \mathrm{x}_{3} \\
& \mathrm{x}_{1} \mathrm{x}_{2} \overline{\mathrm{x}}_{3} \\
& \mathrm{x}_{1} \overline{\mathrm{x}}_{2} \overline{\mathrm{x}}_{3} \\
& \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}
\end{aligned}
$$

Let's Derive the SOP form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$f=m_{1}+m_{2}+m_{4}+m_{7}$ $=\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}$

Sum-of-products realization

[Figure 2.32a from the textbook]

Let's Derive the POS form

[Figure 2.31 from the textbook]

Let's Derive the POS form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

[Figure 2.22 from the textbook]

Let's Derive the POS form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Let's Derive the POS form

Let's Derive the POS form

$$
\begin{aligned}
& \left(x_{1}+x_{2}+x_{3}\right) \\
& \left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right) \\
& \left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right) \\
& \left(\bar{x}_{1}+\bar{x}_{2}+x_{3}\right)
\end{aligned}
$$

Let's Derive the POS form

x_{1}	x_{2}	x_{3}	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1

\hline 1

\hline 0

\hline\end{array} \mathbf{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}\right)\)

$$
\begin{aligned}
f & =M_{0} \cdot M_{3} \cdot M_{5} \cdot M_{6} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+\bar{x}_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+x_{3}\right)
\end{aligned}
$$

Product-of-sums realization

[Figure 2.32b from the textbook]

Function Synthesis

Example 2.10

Implement the function $f\left(x_{1}, x_{2}, x_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

[Figure 2.22 from the textbook]

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(2,3,4,6,7)
$$

- The SOP expression is:

$$
\begin{aligned}
f & =m_{2}+m_{3}+m_{4}+m_{6}+m_{7} \\
& =\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}
\end{aligned}
$$

- This could be simplified as follows:

$$
\begin{aligned}
f & =\bar{x}_{1} x_{2}\left(\bar{x}_{3}+x_{3}\right)+x_{1}\left(\bar{x}_{2}+x_{2}\right) \bar{x}_{3}+x_{1} x_{2}\left(\bar{x}_{3}+x_{3}\right) \\
& =\bar{x}_{1} x_{2}+x_{1} \bar{x}_{3}+x_{1} x_{2} \\
& =\left(\bar{x}_{1}+x_{1}\right) x_{2}+x_{1} \bar{x}_{3} \\
& =x_{2}+x_{1} \bar{x}_{3}
\end{aligned}
$$

Recall Property 14a

14a. $\quad x \cdot y+x \cdot \bar{y}=x$
14b. $\quad(x+y) \cdot(x+\bar{y})=x$

SOP realization of the function

The SOP expression is: $f=x_{2}+x_{1} \bar{x}_{3}$

[Figure 2.30a from the textbook]

Example 2.12

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Pi \mathrm{M}(0,1,5)$,
which is equivalent to $f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$

Minterms and Maxterms (with three variables)

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

$f\left(x_{1}, x_{2}, x_{3}\right)=\Pi M(0,1,5)$

- The POS expression is:

$$
\begin{aligned}
f & =M_{0} \cdot M_{1} \cdot M_{5} \\
& =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right)
\end{aligned}
$$

- This could be simplified as follows:

$$
\begin{aligned}
f & =\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}+x_{2}+\bar{x}_{3}\right)\left(x_{1}+x_{2}+\bar{x}_{3}\right)\left(\bar{x}_{1}+x_{2}+\bar{x}_{3}\right) \\
& =\left(\left(x_{1}+x_{2}\right)+x_{3}\right)\left(\left(x_{1}+x_{2}\right)+\bar{x}_{3}\right)\left(x_{1}+\left(x_{2}+\bar{x}_{3}\right)\right)\left(\bar{x}_{1}+\left(x_{2}+\bar{x}_{3}\right)\right) \\
& =\left(\left(x_{1}+x_{2}\right)+x_{3} \bar{x}_{3}\right)\left(x_{1} \bar{x}_{1}+\left(x_{2}+\bar{x}_{3}\right)\right) \\
& =\left(x_{1}+x_{2}\right)\left(x_{2}+\bar{x}_{3}\right)
\end{aligned}
$$

Recall Property 14b

14a. $x \cdot y+x \cdot \bar{Y}=x$
14b. $(x+y)^{\bullet}(x+\bar{y})=x$
Combining

POS realization of the function

The POS expression is: $f=\left(x_{1}+x_{2}\right)\left(x_{2}+\bar{x}_{3}\right)$

[Figure 2.29a from the textbook]

More Examples

Example 2.14

Implement the function $f\left(x_{1}, x_{2}, x_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NAND gates.

Example 2.14

Implement the function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NAND gates.

The SOP expression is: $f=x_{2}+x_{1} \bar{x}_{3}$

NAND-gate realization of the function

(a) SOP implementation

(b) NAND implementation

Example 2.13

Implement the function $f\left(x_{1}, x_{2}, x_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NOR gates.

Example 2.13

Implement the function $f\left(x_{1}, x_{2}, x_{3}\right)=\Sigma \mathrm{m}(2,3,4,6,7)$ using only NOR gates.

The POS expression is: $\mathrm{f}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)\left(\mathrm{x}_{2}+\overline{\mathrm{x}}_{3}\right)$

NOR-gate realization of the function

(a) POS implementation

(b) NOR implementation
[Figure 2.29 from the textbook]

Implementation with Chips

(a) Dual-inline package

Figure B.21. A 7400-series chip.

Figure B.22. An implementation of $f=x_{1} x_{2}+\overline{x_{2}} x_{3}$.

Multiplexers

2-to-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $\mathbf{s}=\mathbf{0}$, then the output is equal to x_{1}
- If $s=1$, then the output is equal to x_{2}

Graphical Symbol for a 2-to-1 Multiplexer

Analogy: Railroad Switch

Analogy: Railroad Switch

Analogy: Railroad Switch

This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.
http://en.wikipedia.org/wiki/Railroad_switch]

Truth Table for a 2-to-1 Multiplexer

$s x_{1} x_{2}$	$f\left(s, x_{1}, x_{2}\right)$
0	0

[Figure 2.33a from the textbook]

Let's Derive the SOP form

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Let's Derive the SOP form

| s | x_{1} | x_{2} |
| :---: | :---: | :---: | \left\lvert\, \(f\left(s, x_{1}, x_{2}\right) ~\left(\begin{array}{ccc}0 \& 0 \& 0

0 \& 0 \& 1

0 \& 1 \& 0

0 \& 1 \& 1

1 \& 0 \& 0

1 \& 0 \& 1

1 \& 1 \& 0

1 \& 1 \& 1

\hline\end{array}\right.\right.\)

Let's Derive the SOP form

Where should we put the negation signs?
$s x_{1} x_{2}$
$s x_{1} x_{2}$
$s x_{1} x_{2}$
$s x_{1} x_{2}$

Let's Derive the SOP form

Let's Derive the SOP form

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

Circuit for 2-to-1 Multiplexer

(b) Circuit

(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

More Compact Truth-Table Representation

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(a)Truth table

4-to-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: $\mathbf{s}_{\mathbf{1}}$ and $\mathbf{s}_{\mathbf{0}}$
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

4-to-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: \mathbf{s}_{1} and \mathbf{s}_{0}
- If $s_{1}=0$ and $s_{0}=0$, then the output f is equal to w_{0}
- If $s_{1}=0$ and $s_{0}=1$, then the output f is equal to w_{1}
- If $s_{1}=1$ and $s_{0}=0$, then the output f is equal to w_{2}
- If $s_{1}=1$ and $s_{0}=1$, then the output f is equal to w_{3}

We'll talk more about this when we get
to chapter 4 , but here is a quick preview.

Graphical Symbol and Truth Table

(a) Graphic symbol
(b) Truth table
[Figure 4.2a-b from the textbook]

The long-form truth table

The long-form truth table

$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	F	$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \quad \mathrm{I}_{1} \mathrm{I}_{0}$	F	$\mathrm{S}_{1} \mathrm{~S}_{0}$		F	$\mathrm{S}_{1} \mathrm{~S}_{0}$	$\mathrm{I}_{3} \mathrm{I}_{2} \quad \mathrm{I}_{1} \mathrm{I}_{0}$	F
00	0000	0	01	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0	10	00000	0	11	$00_{0} 000$	0
	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	1		$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	0		$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	0		$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	0
	$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	0		$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	1		$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	0		$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	0
	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	1		$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1		$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	0		$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	0
	$0 \begin{array}{llll}0 & 1 & 0\end{array}$	0		$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0		$\begin{array}{lllll}0 & 1 & 0 & 0\end{array}$	1		$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	0
	$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	1		$\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	0		$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1		$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	0
	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	0		$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	1		$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	1		$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	0
	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1		$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1		$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1		$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	0
	1000	0		$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$	0		10000	0		$1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$	1
	10001	1		$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	0		$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	0		$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	1
	$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	0		$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1		$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	0		$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1
	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1		$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1		$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	0		$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1
	1100	0		1100	0		1100	1		$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	1
	1101	1		$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	0		$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	1		$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	1
	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	0		$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	1		$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1		$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1
	$\begin{array}{llll}1 & 1 & 1\end{array}$	1		$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1		$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1		$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1

The long-form truth table

The long-form truth table

The long-form truth table

4-to-1 Multiplexer (SOP circuit)

[Figure 4.2c from the textbook]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

[Figure 4.3 from the textbook]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer

That is different from the SOP form of the 4-to-1 multiplexer shown below, which uses fewer gates

16-to-1 Multiplexer

[Figure 4.4 from the textbook]

[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END

