

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Minimization

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 20 @ 4 pm
- It is posted on the class web page
- I also sent you an e-mail with the link.

Quick Review

Expressions with three variables (for three-variable K-maps)

Groupings and Expressions

Groupings and Expressions

Expressions with two variables (for three-variable K-maps)

Groupings and Expressions

Groupings and Expressions

Groupings and Expressions

0	0	0	0	0
1	0	1	1	1

Expressions with one variable (for three-variable K-maps)

Groupings and Expressions

Groupings and Expressions

Expressions with zero variables (for three-variable K-maps)

Groupings and Expressions

Adjacency Rules

adjacent
columns

As if the K-map were drawn on a cylinder

Adjacency Rules

adjacent
columns

As if the K-map were drawn on a cylinder

Adjacency Rules

adjacent
columns

As if the K-map were drawn on a cylinder

Adjacency Rules

adjacent
columns

As if the K-map were drawn on a cylinder

Grouping Size v.s. Term Size (for 3-variable K-maps)

Grouping Size v.s. Term Size

3 -variable term

2-variable term

1-variable term

0 -variable term

Grouping Size v.s. Term Size

3 -variable term

2-variable term

1-variable term

0 -variable term

Grouping Size v.s. Term Size (for 4-variable K-maps)

Grouping Size v.s. Term Size

4-variable term

3 -variable term

2 -variable term

1-variable term

0 -variable term

Grouping Size v.s. Term Size

4-variable term

3 -variable term

2 -variable term

1-variable term

0 -variable term

Grouping Size v.s. Term Size (for 2-variable K-maps)

Grouping Size v.s. Term Size

2 -variable term

1-variable term

0 -variable term

Grouping Size v.s. Term Size

2 -variable term

1-variable term

0 -variable term

Grouping Size v.s. Term Size

2-variable
K-map
3-variable
K-map

4-variable
K-map

2

1

0
1
2

N/A

N/A
3
4

2
3

0

N/A3
/
1

0

Example: K-Map for the 2-1 Multiplexer

2-1 Multiplexer (Definition)

- Has two inputs: x_{1} and x_{2}
- Also has another input line s
- If $s=0$, then the output is equal to \mathbf{x}_{1}
- If $s=1$, then the output is equal to x_{2}

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

Truth Table for a 2-1 Multiplexer

$s x_{1} x_{2}$	$f\left(s, x_{1}, x_{2}\right)$
0	0

[Figure 2.33a from the textbook]

Let's Draw the K-map

[Figure 2.33a from the textbook]

Let's Draw the K-map

Compare this with the SOP derivation

Let's Derive the SOP form

s	x_{1}	x_{2}	$f\left(s, x_{1}, x_{2}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Let's Derive the SOP form

| s | x_{1} | x_{2} |
| :---: | :---: | :---: | \left\lvert\, \(f\left(s, x_{1}, x_{2}\right) ~\left(\begin{array}{ccc}0 \& 0 \& 0

0 \& 0 \& 1

0 \& 1 \& 0

0 \& 1 \& 1

1 \& 0 \& 0

1 \& 0 \& 1

1 \& 1 \& 0

1 \& 1 \& 1

\hline\end{array}\right.\right.\)

Let's Derive the SOP form

Where should we put the negation signs?
$s x_{1} x_{2}$
$s x_{1} x_{2}$
$s x_{1} x_{2}$
$s x_{1} x_{2}$

Let's Derive the SOP form

Let's Derive the SOP form

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

Let's Draw the K-map again

[Figure 2.33a from the textbook]

Let's Draw the K-map again

	$s x_{1} x_{2}$	$f\left(s, x_{1}, x_{2}\right)$	
m_{0}	0	0	0
m_{1}	0	0	1
m_{2}	0	1	0
m_{3}	0	1	1
m_{4}	1	0	1
m_{5}	1	0	1
m_{6}	1	1	1
m_{7}	0	0	

Let's Draw the K-map again

Let's Draw the K-map again

Let's Draw the K-map again

The order of the labeling matters.

Let's Draw the K-map again

This is correct!

Two Different Ways to Draw the K-map

x_{1}	x_{2}	x_{3}	
0	0	0	m_{0}
0	0	1	m_{1}
0	1	0	m_{2}
0	1	1	m_{3}
1	0	0	m_{4}
1	0	1	m_{5}
1	1	0	m_{6}
1	1	1	m_{7}
(a) Truth table			

(b) Karnaugh map

Another Way to Draw 3-variable K-map

x_{1}	x_{2}	x_{3}	
0	0	0	m_{0}
0	0	1	m_{1}
0	1	0	m_{2}
0	1	1	m_{3}
1	0	0	m_{4}
1	0	1	m_{5}
1	1	0	m_{6}
1	1	1	m_{7}
(a) Truth table			

(b) Karnaugh map

There are 4 different versions!

$\mathrm{X}_{2} \mathrm{X}_{3}$				
X_{1}	00	01	11	10
0	m_{0}	m_{1}	m_{3}	m_{2}
1	m_{4}	m_{5}	m_{7}	m_{6}

Gray Code

- Sequence of binary codes
- Neighboring lines vary by only 1 bit

	000
00	001
01	011
11	010
10	110
	111
	101
	100

Gray Code \& K-map

	s	$x_{1} x_{2}$	
	0	0	0
m_{1}	0	0	1
m_{2}	0	1	0
m_{3}	0	1	1
m_{4}	1	0	0
m_{5}	1	0	1
m_{6}	1	1	0
m_{7}	1	1	1

$s x_{1}$				
x_{2}	00	01	11	10
0	m_{0}	m_{2}	m_{6}	m_{4}
1	m_{1}	m_{3}	m_{7}	m_{5}

Gray Code \& K-map

$s x_{1} x_{2}$	
m_{0}	000
m_{1}	001
m_{2}	010
m_{3}	011
m_{4}	100
m_{5}	101
m_{6}	110
	111

Gray Code \& K-map

	s	x_{1}	x_{2}
m_{0}	0	0	0
m_{1}	0	0	1
m_{2}	0	1	0
m_{3}	0	1	1
m_{4}	1	0	0
m_{5}	1	0	1
m_{6}	1	1	0
m_{7}	1	1	1

These two neighbors differ only in the LAST bit

Gray Code \& K-map

	s	x_{1}	x_{2}
m_{0}	0	0	0
m_{1}	0	0	1
m_{2}	0	1	0
m_{3}	0	1	1
m_{4}	1	0	0
m_{5}	1	0	1
m_{6}	1	1	0
m_{7}	1	1	1

These two neighbors differ only in the LAST bit

Gray Code \& K-map

	$s x_{1} x_{2}$
m_{0}	000
m_{1}	001
m_{2}	010
m_{3}	011
m_{4}	100
m_{5}	101
m_{6}	110
m_{7}	111

These two neighbors differ only in the FIRST bit

Gray Code \& K-map

	$s x_{1} x_{2}$
m_{0}	000
m_{1}	001
m_{2}	010
m_{3}	011
m_{4}	100
m_{5}	101
m_{6}	110
m_{7}	111

These two neighbors differ only in the FIRST bit

Adjacency Rules

Gray Code \& K-map

These four neighbors
differ in the FIRST and LAST bit

They are similar in their MIDDLE bit

Gray Code \& K-map

These four neighbors differ in the FIRST and LAST bit

They are similar in their MIDDLE bit

A four-variable Karnaugh map

[Figure 2.53 from the textbook]

A four-variable Karnaugh map

$x 1$	$x 2$	$x 3$	$x 4$	
0	0	0	0	m 0
0	0	0	1	m 1
0	0	1	0	m 2
0	0	1	1	m 3
0	1	0	0	m 4
0	1	0	1	m 5
0	1	1	0	m 6
0	1	1	1	m 7
1	0	0	0	m 8
1	0	0	1	m 9
1	0	1	0	m 10
1	0	1	1	m 11
1	1	0	0	m 12
1	1	0	1	m 13
1	1	1	0	m 14
1	1	1	1	m 15

Adjacency Rules

adjacent columns

$x_{3} x_{4} x_{1} x_{2}$					
$x_{3} x_{4}$	00	01	11	10	
	m_{0}	m_{4}	m_{12}	m_{8}	
01	m_{1}	m_{5}	m_{13}	m_{9}	adjacentrows
1110	m_{3}	m_{7}	m_{15}	m_{11}	
	m_{2}	m_{6}	m_{14}	m_{10}	
adjacent columns					

Adjacency Rules

Adjacency Rules

Adjacency Rules

Adjacency Rules

Gray Code \& K-map

Gray Code \& K-map

Example of a four-variable Karnaugh map

[Figure 2.54 from the textbook]

Example of a four-variable Karnaugh map

[Figure 2.54 from the textbook]

Five-Variable K-Map

A five-variable Karnaugh map

[Figure 2.55 from the textbook]

Strategy For Minimization

Grouping Rules

- Group "1"s with rectangles
- Both sides a power of 2 :
- $1 \times 1,1 \times 2,2 \times 1,2 \times 2,1 \times 4,4 \times 1,2 \times 4,4 \times 2,4 \times 4$
- Can use the same minterm more than once
- Can wrap around the edges of the map
- Some rules in selecting groups:
- Try to use as few groups as possible to cover all "1"s.
- For each group, try to make it as large as you can (i.e., if you can use a 2×2, don't use a $\mathbf{2 x 1}$ even if that is enough).

Terminology

Literal: a variable, complemented or uncomplemented

Some Examples:

- X_{1}
- X_{2}

Terminology

- Implicant: product term that indicates the input combinations for which the function output is 1
- Example
- $\bar{x}_{1} \quad$ - indicates that $\bar{x}_{1} x_{2}$ and $x_{1} x_{2}$ yield output of 1

Terminology

- Prime Implicant
- Implicant that cannot be combined into another implicant with fewer literals
- Some Examples

Not prime

Prime

Terminology

- Essential Prime Implicant
- Prime implicant that includes a minterm not covered by any other prime implicant
- Some Examples

Terminology

- Cover

- Collection of implicants that account for all possible input valuations where output is 1
- Ex. $x_{1}{ }^{\prime} x_{2} x_{3}+x_{1} x_{2} x_{3}{ }^{\prime}+x_{1} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$
- Ex. $x_{1}{ }^{\prime} x_{2} x_{3}+x_{1} x_{3}{ }^{\prime}$

x_{3}| $x_{1} x_{2}$ | | | | |
| ---: | :---: | :---: | :---: | :---: |
| | | | | |
| 0 | 00 | 01 | 11 | 10 |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| | | | | |

Example

- Give the Number of
- Implicants?
- Prime Implicants?
- Essential Prime Implicants?

$x_{1} x_{2}$				
X_{3}	00	01	11	10
0	1	1	0	0
1	1	1	1	0

Why concerned with minimization?

- Simplified function
- Reduce the cost of the circuit
- Cost: Gates + Inputs
- Transistors

Three-variable function $f\left(x_{1}, x_{2}, x_{3}\right)=\sum m(0,1,2,3,7)$

[Figure 2.56 from the textbook]

Example

Example

Example

Example

$$
\mathrm{f}=\overline{\mathrm{x}}_{1} \overline{\mathrm{x}}_{3} \overline{\mathrm{x}}_{4}+\mathrm{x}_{2} \overline{\mathrm{x}}_{3} \mathrm{x}_{4}+\mathrm{x}_{1} \mathrm{x}_{3} \mathrm{x}_{4}+\overline{\mathrm{x}}_{2} \mathrm{x}_{3} \overline{\mathrm{x}}_{4}
$$

Example: Another Solution

Example: Another Solution

[Figure 2.59 from the textbook]

Example: Another Solution

Example: Another Solution

Example: Both Are Valid Solutions

[Figure 2.59 from the textbook]

Example: Both Are Valid Solutions

Minimization of Product-of-Sums Forms

Do You Still Remember This Boolean Algebra Theorem?

14a.	$x \cdot y+x \cdot \bar{y}=x$
14b.	$(x+y) \cdot(x+\bar{y})=x$

Let's prove 14.b

Let's prove 14.b

Let's prove 14.b

Let's prove 14.b

Let's prove 14.b

x	y	$(\mathbf{x}$	$\mathbf{y}) \bullet(\mathbf{x}$	$\mathbf{y} \overline{\mathbf{Y}})$	$=\mathbf{x}$
0	0	0	0	1	0
0	1	1	0	0	0
1	0	1	1	1	1
1	1	1	1	1	1

Let's prove 14.b

They are equal.

Grouping Example

\mathbf{M}_{0}

M_{2}

Grouping Example

M_{0}

M_{2}

$=$
$\mathbf{M}_{0}{ }^{*} \mathbf{M}_{\mathbf{2}}$

Grouping Example

M_{0}

M_{2}

$=$
$\mathbf{M}_{0}{ }^{\text {* }} \mathbf{M}_{\mathbf{2}}$

Grouping Example

M_{0}

M_{2}

$=$
$\mathbf{M}_{0}{ }^{\text {* }} \mathbf{M}_{\mathbf{2}}$

Grouping Example

Expressions with three variables (for three-variable K-maps)

Groupings and Expressions

0	1	0	1	1
1	1	1	1	1

Groupings and Expressions

0	1	1	1	1
	1	00	01	11

Expressions with two variables (for three-variable K-maps)

Groupings and Expressions

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | |

Groupings and Expressions

$\left(X_{1}+x_{3}\right)$

$\left(x_{2}+x_{3}\right)$

Groupings and Expressions

$$
\left(x_{1}+\overline{x_{3}}\right)
$$

	00	01	11	10
0	1	1	1	1
1	1	0	0	1

Expressions with one variable (for three-variable K-maps)

Groupings and Expressions

$\left(X_{1}\right)$

$\left(\bar{x}_{2}\right)$

(X_{2})

Groupings and Expressions

Expressions with zero variables (for three-variable K-maps)

Groupings and Expressions

Some Examples

POS minimization of $f\left(x_{1}, x_{2}, x_{3}\right)=\Pi M(4,5,6)$

[Figure 2.60 from the textbook]

POS minimization of $f\left(x_{1}, \ldots, x_{4}\right)=\Pi M(0,1,4,8,9,12,15)$

[Figure 2.61 from the textbook]

Questions?

THE END

