

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Minimization

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 20 @ 4 pm
- It is posted on the class web page
- I also sent you an e-mail with the link.

Quick Review

Expressions with three variables (for three-variable K-maps)

 $\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$

 $\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$

 $\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$

 $\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$

Expressions with two variables (for three-variable K-maps)

 $x_1 \ x_2$

 $\mathbf{x}_1 \ \mathbf{x}_2$

 $\mathbf{X}_2 \mathbf{X}_3$

 $\mathbf{X}_1 \mathbf{X}_3$

 $x_2 x_3$

 $\mathbf{X}_1 \mathbf{X}_3$

 $\mathbf{X}_2 \mathbf{X}_3$

Expressions with one variable (for three-variable K-maps)

 \mathbf{X}_2

X₁

Expressions with zero variables (for three-variable K-maps)

adjacent columns

columns

adjacent columns

adjacent columns

Grouping Size v.s. Term Size (for 3-variable K-maps)

3-variable term

2-variable term

1-variable term

0-variable term

Grouping Size v.s. Term Size (for 4-variable K-maps)

Grouping Size v.s. Term Size 4-variable term 3-variable term 2-variable term 1-variable term 0-variable term

Grouping Size v.s. Term Size (for 2-variable K-maps)

Example: K-Map for the 2-1 Multiplexer

2-1 Multiplexer (Definition)

- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x_1
- If s=1, then the output is equal to x_2

Circuit for 2-1 Multiplexer

(b) Circuit

(c) Graphical symbol

[Figure 2.33b-c from the textbook]

Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Let's Draw the K-map

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]
_			
	$s x_1 x_2$	$f(s, x_1, x_2)$	
m_0	000	0	
m_1	001	0	
m_2	010	1	
<i>m</i> ₃	011	1	
m_4	100	0	
m_5	101	1	
<i>m</i> ₆	110	0	
m_7	111	1	

•	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
<i>m</i> ₁	001	0
<i>m</i> ₂	010	1
<i>m</i> ₃	011	1
m_4	100	0
<i>m</i> ₅	101	1
<i>m</i> ₆	110	0
m_7	111	1

x_1x_2				
s	00	01	11	10
0	<i>m</i> ₀	m_2	<i>m</i> ₆	m_4
1	m_1	<i>m</i> ₃	<i>m</i> ₇	m_5

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	011	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2				
s	00	01	11	10
0	0	1	0	0
1	0	1	1	1

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	r r				
m_1	001	0	$s^{\lambda_1 \lambda_2}$	2	01	11	10
m_2	010	1		00		11	10
m_3	011	1	0	0	$\left(\begin{array}{c}1\end{array}\right)$	0	0
<i>m</i> ₄	100	0	1	0	$\left 1 \right $	1	1)
m_5	101	1					
<i>m</i> ₆	110	0					
m_7	111	1					

Compare this with the SOP derivation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x}_{2} + \overline{s} x_{1} x_{2} + s \overline{x}_{1} x_{2} + s x_{1} x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$

Let's simplify this expression

 $f(s, x_{1}, x_{2}) = \overline{s} x_{1} \overline{x_{2}} + \overline{s} x_{1} x_{2} + s \overline{x_{1}} x_{2} + s x_{1} x_{2}$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} (\overline{x_{2}} + x_{2}) + s (\overline{x_{1}} + x_{1}) x_{2}$$

$$f(s, x_{1}, x_{2}) = \overline{s} x_{1} + s x_{2}$$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]

_				
_	$s x_1 x_2$	$f(s, x_1, x_2)$		
m_0	000	0		
<i>m</i> ₁	001	0		
<i>m</i> ₂	010	1		
<i>m</i> ₃	011	1		
m_4	100	0		
<i>m</i> ₅	101	1		
<i>m</i> ₆	110	0		
<i>m</i> ₇	111	1		

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
<i>m</i> ₁	001	0
<i>m</i> ₂	010	1
<i>m</i> ₃	011	1
m_4	100	0
<i>m</i> ₅	101	1
<i>m</i> ₆	110	0
m_7	111	1

$x_1 x_2$						
2 /	00	01	11	10		
0	<i>m</i> ₀	m_2	<i>m</i> ₆	m_4		
1	m_1	<i>m</i> ₃	m_7	m_5		

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	x, x				
m_1	001	0	s^{1}	2	01	11	10
m_2	010	1		00	01	11	10
<i>m</i> ₃	011	1	0	m_0	<i>m</i> ₂	<i>m</i> ₆	<i>m</i> ₄
<i>m</i> ₄	100	0	1	m_1	<i>m</i> ₃	m_7	m_5
m_5	101	1					
<i>m</i> ₆	110	0					
m_7	111	1					

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	C Y	•			
m_1	001	0	χ_2		01	11	10
m_2	010	1	2	00	01	11	10
m_3	011	1	0	m_0	m_2	<i>m</i> ₆	m_4
m_4	100	0	1	m_1	<i>m</i> ₃	m ₇	m_5
m_5	101	1					
<i>m</i> ₆	110	0					
m_7	111	1	The ord	ler of t	he labe	eling n	natters

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	ςγ				
m_1	001	0	x_2	00	01	11	10
m_2	010	1	2	00	01		
<i>m</i> ₃	011	1	0	m_0	<i>m</i> ₂	<i>m</i> ₆	<i>m</i> ₄
m_4	100	0	1	m_1	<i>m</i> ₃	<i>m</i> ₇	m_5
m_5	101	1					
<i>m</i> ₆	110	0					
m_7	111	1					

	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	S Y	-			
m_1	001	0	x_2	1	01	11	10
m_2	010	1	2	00	01	11	10
m_3	011	1	0	0	1	0	0
m_4	100	0	1	0	1	1	1
m_5	101	1					
<i>m</i> ₆	110	0					
m_7	111	1					

This is correct!

Two Different Ways to Draw the K-map

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	
0	0	0	<i>m</i> ₀
0	0	1	m_{1}
0	1	0	m ₂
0	1	1	m ₃
1	0	0	m 4
1	0	1	m ₅
1	1	0	m ₆
1	1	1	m 7
(a) Truth table			

(b) Karnaugh map

Another Way to Draw 3-variable K-map

<i>x</i> 1	<i>x</i> 2	<i>x</i> ₃						
0	0	0	<i>m</i> ₀	x x x x x x x x x x	2 00	01	11	10
0	0	1	<i>m</i> 1					
0	1	0	m 2	0	^m 0	<i>m</i> ₂	<i>m</i> ₆	<i>m</i> 4
0	1	1	m ₃	1	<i>m</i> 1	<i>m</i> ₃	m 7	m ₅
1	0	0	m 4					
1	0	1	m 5	(b) Karr	naugh	map	
1	1	0	<i>m</i> ₆		x ₁			
1	1	1	m –	x ₂	x_3	0	1	
					00	m ₀	m∠	1

(a) Truth table

3	0	1
00	m ₀	m ₄
01	m ₁	m ₅
11	m ₃	m ₇
10	m ₂	m ₆

There are 4 different versions!

Gray Code

- Sequence of binary codes
- Neighboring lines vary by only 1 bit

	000
	001
00	011
01	010
11	110
10	111
	101
	100

-	$s x_1 x_2$
m_0	000
<i>m</i> ₁	001
<i>m</i> ₂	010
<i>m</i> ₃	011
m_4	100
<i>m</i> ₅	101
<i>m</i> ₆	110
<i>m</i> 7	111

$s x_1$					
x_2	00	01	11	10	
0	000	010	110	100	
1	001	011	111	101	

These two neighbors differ only in the LAST bit

	$s x_1 x_2$			
m_0^{-}	000			
m_1	001			
m_2	010			
<i>m</i> ₃	011			
m_4	100			
m_5	101			
<i>m</i> ₆	110			
m_7	111			

$s x_1$				
x_2	00	01	11	10
0	000	010	110	100
1	001	011	111	101

These two neighbors differ only in the LAST bit

$S X_1$					
x_2	00	01	11	10	
0	000	010	110	100	
1	001	011	111	101	

These two neighbors differ only in the FIRST bit

$s x_1$					
x_2	00	01	11	10	
0	000	010	110	100	
1	001	011	111	101	

These two neighbors differ only in the FIRST bit

Adjacency Rules

-	$s x_1 x_2$				
m_0^{-}	000				
m_1	001				
m_2	010				
<i>m</i> ₃	011				
m_4	100				
m_5	101				
<i>m</i> ₆	110				
m_7	111				

$s x_1$				
x_2	00	01	11	10
0	000	010	110	100
1	001	011	111	101

These four neighbors differ in the FIRST and LAST bit

They are similar in their MIDDLE bit
Gray Code & K-map

_	$s x_1 x_2$
m_0^{-}	000
m_1	001
m_2	010
<i>m</i> ₃	011
m_4	100
m_5	101
<i>m</i> ₆	110
m_7	111

<i>s x</i> ₁								
x_2	00	01	11	10				
0	000	010	110	100				
1	001	011	111	101				

These four neighbors differ in the FIRST and LAST bit

They are similar in their MIDDLE bit

A four-variable Karnaugh map

[Figure 2.53 from the textbook]

A four-variable Karnaugh map

x1	x2	x3	x4	
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

Gray Code & K-map

x1	x2	x3	x4						x		
0	0	0	0	m0						1	
0	0	0	1	m1	Ň	$\begin{pmatrix} x & x \\ 1 & x \end{pmatrix}$	2			<u> </u>	•
0	0	1	0	m2	$\begin{array}{c}x & x\\ 3 \end{array}$	4	00	01	11	10	
0	0	1	1	m3				01		10	٦
0	1	0	0	m4			100	100	100	100	
0	1	0	1	m5		00	<i>m</i> 0	m_{4}	<i>m</i> 12	^m 8	
0	1	1	0	m6							
0	1	1	1	m7		01	m_{1}	m_{5}	m_{13}	m_{o}	
1	0	0	0	m8		01	1	5	15	,	
1	0	0	1	m9							
1	0	1	0	m10		11	m_{3}	m 7	m_{15}	m_{11}	
1	0	1	1	m11	x 3 <						_ J
1	1	0	0	m12	5	10	m	m	m	m	
1	1	0	1	m13		10	2	6	14	10	
1	1	1	0	m14				1			
1	1	1	1	m15						•	
								X	2		

*x*₄

Gray Code & K-map

x1	x2	x3	x4						x		
0	0	0	0	m0						1	
0	0	0	1	m1	\sim	$\begin{pmatrix} x & x \\ 1 & x \end{pmatrix}$	2	4			
0	0	1	0	m2	$\begin{array}{c} x \\ 3 \end{array}$	4	00	01	11	10	
0	0	1	1	m3			00	01	11	10	
0	1	0	0	m4			0000	0100	1100	1000	
0	1	0	1	m5		00	0000	0100	1100	1000	
0	1	1	0	m6							1
0	1	1	1	m7		01	0001	0101	1101	1001	
1	0	0	0	m8		01					
1	0	0	1	m9	ſ						Γ
1	0	1	0	m10		11	0011	0111	1111	1011	
1	0	1	1	m11	x 3 <						J
1	1	0	0	m12	5	10	0010	0110	1110	1010	
1	1	0	1	m13		10	0010	0110	1110	1010	
1	1	1	0	m14		•					
1	1	1	1	m15							
								x	2		

*x*₄

Example of a four-variable Karnaugh map

Example of a four-variable Karnaugh map

Five-Variable K-Map

A five-variable Karnaugh map

[Figure 2.55 from the textbook]

Strategy For Minimization

Grouping Rules

- Group "1"s with rectangles
- Both sides a power of 2:
 - 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4
- Can use the same minterm more than once
- Can wrap around the edges of the map
- Some rules in selecting groups:
 - Try to use as few groups as possible to cover all "1"s.
 - For each group, try to make it as large as you can (i.e., if you can use a 2x2, don't use a 2x1 even if that is enough).

Literal: a variable, complemented or uncomplemented

Some Examples:

- X₁
- X₂

- Implicant: product term that indicates the input combinations for which the function output is 1
- Example

• \mathbf{x}_1^- - indicates that $\mathbf{x}_1\mathbf{x}_2$ and $\mathbf{x}_1\mathbf{x}_2$ yield output of 1

- Prime Implicant
 - Implicant that cannot be combined into another implicant with fewer literals
 - Some Examples

- Essential Prime Implicant
 - Prime implicant that includes a minterm not covered by any other prime implicant
 - Some Examples

- Cover
 - Collection of implicants that account for all possible input valuations where output is 1
 - Ex. $x_1' x_2 x_3 + x_1 x_2 x_3' + x_1 x_2' x_3'$
 - Ex. $x_1' x_2 x_3 + x_1 x_3'$

- Give the Number of
 - Implicants?
 - Prime Implicants?
 - Essential Prime Implicants?

Why concerned with minimization?

- Simplified function
- Reduce the cost of the circuit
 - Cost: Gates + Inputs
 - Transistors

Three-variable function f $(x_1, x_2, x_3) = \sum m(0, 1, 2, 3, 7)$

[Figure 2.56 from the textbook]

 $f = \bar{x}_1 \bar{x}_3 \bar{x}_4 + x_2 \bar{x}_3 x_4 + x_1 x_3 x_4 + \bar{x}_2 x_3 \bar{x}_4$

[Figure 2.59 from the textbook]

 $\mathbf{f} = \bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2 \bar{\mathbf{x}}_4 + \bar{\mathbf{x}}_1 \mathbf{x}_2 \bar{\mathbf{x}}_3 + \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_4 + \mathbf{x}_1 \bar{\mathbf{x}}_2 \mathbf{x}_3$

Example: Both Are Valid Solutions

[Figure 2.59 from the textbook]

Example: Both Are Valid Solutions

 $f = \bar{x}_1 \bar{x}_3 \bar{x}_4 + x_2 \bar{x}_3 x_4 + x_1 x_3 x_4 + \bar{x}_2 x_3 \bar{x}_4$ $f = \bar{x}_1 \bar{x}_2 \bar{x}_4 + \bar{x}_1 x_2 \bar{x}_3 + x_1 x_2 x_4 + x_1 \bar{x}_2 x_3$

Minimization of Product-of-Sums Forms

Do You Still Remember This Boolean Algebra Theorem?

14a.
$$\mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{\overline{y}} = \mathbf{x}$$

14b.
$$(x + y) \cdot (x + y) = x$$

Combining
x	у	$(\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x}$
0	0	
0	1	
1	0	
1	1	

x	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	0
0	1	1
1	0	1
1	1	1

x	у	(x +	y)•(x + y)	= x
0	0	0	1	
0	1	1	0	
1	0	1	1	
1	1	1	1	

x	у	(x +	y)•(x	+ <u>y</u>)	= x
0	0	0	0	1	
0	1	1	0	0	
1	0	1	1	1	
1	1	1	1	1	

x	у	(x +	y)•(x	+ <u>y</u>)	= x
0	0	0	0	1	0
0	1	1	0	0	0
1	0	1	1	1	1
1	1	1	1	1	1

They are equal.

 M_0

 M_2

Property 14b (Combining)

Expressions with three variables (for three-variable K-maps)

 $\mathbf{X}_1 \mathbf{X}_2$ X_3

 $(x_1 + x_2 + x_3)$

 $(\overline{x_1} + x_2 + x_3)$

 $(\overline{x_1} + \overline{x_2} + x_3)$

 $(\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_3)$

 x_1x_2 **X**3

 $(\overline{x_1} + x_2 + \overline{x_3})$

Expressions with two variables (for three-variable K-maps)

 $(\bar{x}_1 + x_2)$

 $(x_1 + x_3)$

 $(\bar{x}_2 + x_3)$

 $(x_2 + x_3)$

Expressions with one variable (for three-variable K-maps)

 (x_2)

Expressions with zero variables (for three-variable K-maps)

Some Examples

POS minimization of $f(x_1, x_2, x_3) = \prod M(4, 5, 6)$

[Figure 2.60 from the textbook]

POS minimization of f ($x_1, ..., x_4$) = $\prod M(0, 1, 4, 8, 9, 12, 15)$

[Figure 2.61 from the textbook]

Questions?

THE END