

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW5 is due today

Administrative Stuff

- No homework due next week
- HW6 will be due on Monday, Oct 11

Quick Review

Number Systems

$$
N=d_{n} B^{n}+d_{n-1} B^{n-1}+\cdots+d_{1} B^{1}+d_{0} B^{0}
$$

Number Systems

n-th digit (most significant)

0-th digit
(least significant)

Number Systems

$$
N=d_{n} B^{n^{n}}+d_{n-1} B^{n-1}+\cdots+d_{1} B^{1}+d_{0} B^{0}
$$

The Decimal System

$$
524_{10}=5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}
$$

The Decimal System

$$
\begin{aligned}
524_{10} & =5 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0} \\
& =5 \times 100+2 \times 10+4 \times 1 \\
& =500+20+4 \\
& =524_{10}
\end{aligned}
$$

Another Way to Look at This

Another Way to Look at This

Another Way to Look at This

Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0 .

Base 7

$$
524_{7}=5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0}
$$

Base 7

Base 7

most significant
digit
least significant digit

Base 7

$$
\begin{aligned}
524_{7} & =5 \times 7^{2}+2 \times 7^{1}+4 \times 7^{0} \\
& =5 \times 49+2 \times 7+4 \times 1 \\
& =245+14+4 \\
& =263_{10}
\end{aligned}
$$

Another Way to Look at This

Binary Numbers (Base 2)

$$
1001_{2}=1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
$$

Binary Numbers (Base 2)

most significant bit
least significant bit

Binary Numbers (Base 2)

$$
\begin{aligned}
1001_{2} & =1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& =1 \times 8+0 \times 4+0 \times 2+1 \times 1= \\
& =8+0+1+1 \\
& =9_{10}+
\end{aligned}
$$

Another Example

$$
\begin{aligned}
11101_{2} & =1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}= \\
& =1 \times 16+1 \times 8+1 \times 4+0 \times 2+1 \times 1= \\
& =16+8+0+1+29_{10}+1+1
\end{aligned}
$$

Powers of 2

2^{10}	$=$	1024
2^{9}	$=$	512
2^{8}	$=$	256
2^{7}	$=$	128
2^{6}	$=$	64
2^{5}	$=$	32
2^{4}	$=$	16
2^{3}	$=$	8
2^{2}	$=$	4
2^{1}	$=$	2
2^{0}	$=$	1

What is the value of this binary number?

- 00101100
- 0

0
0
$-0^{*} 2^{7}+0^{*} 2^{6}+1^{*} 2^{5}+0^{*} 2^{4}+1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+0^{*} 2^{0}$

- 0 * $128+0 * 64+1 * 32+0 * 16+1 * 8+1 * 4+0 * 2+0 * 1$
- $0 * 128+0 * 64+1 * 32+0 * 16+1 * 8+1 * 4+0 * 2+0 * 1$
- 32+ $8+4=44$ (in decimal)

Another Way to Look at This

Another Way to Look at This

Signed v.s. Unsigned Numbers

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0 , then the number is positive.
- If that bit is 1 , then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Unsigned Representation

This represents +44 .

Unsigned Representation

This represents +172 .

Signed Representation

(using the left-most bit as the sign)

This represents +44 .

Signed Representation

(using the left-most bit as the sign)

This represents -44 .

Today's Lecture is About Addition of Unsigned Numbers

Addition of two 1-bit numbers

x
$+y$
C S
Carry $\quad 4$ Sum

Addition of two 1-bit numbers (there are four possible cases)

[Figure 3.1a from the textbook]

Addition of two 1-bit numbers (the truth table)

x	y	c	Carry
0	0	0	Sum
0	1	0	0
1	0	0	1
1	1	1	0

[Figure 3.1b from the textbook]

Addition of two 1-bit numbers

[Figure 2.12 from the textbook]

Addition of two 1-bit numbers

x	0 $+y$ $c s$	$\frac{0}{+0}$	$\frac{+1}{01}$	$\frac{1}{+0}$

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	y	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	y	c	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	0 $+y$ $c s$	$\frac{0}{+0}$	$\frac{+1}{01}$	$\frac{1}{+0}$

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	y	c	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	y	c	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	0 $+y$ $c s$	$\frac{0}{+0}$	$\frac{+1}{01}$	$\frac{1}{+0}$

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

$$
\begin{array}{r}
x \\
+y \\
\hline c s
\end{array}
$$

Addition of two 1-bit numbers

$$
\begin{array}{r}
x \\
+y \\
\hline c s
\end{array}
$$

Addition of two 1-bit numbers

x	0 $+y$ $c s$	$\frac{0}{+0}$	$\frac{+1}{01}$	$\frac{1}{+0}$

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

1
$\frac{+1}{01}$
$\begin{array}{r}+0 \\ \hline 01\end{array}$
$\begin{array}{r}+1 \\ \hline 10\end{array}$

x	y	c	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

	0 +0	0 00	1 01

Addition of two 1-bit numbers

x	0 $+y$ $c s$	$\frac{0}{+0}$	$\frac{+1}{01}$	$\frac{1}{+0}$

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

$?$			
x	y	c	s
0	0		
0	1	0	0
1	0	0	1
1	1	1	1

Addition of two 1-bit numbers

AND			
x	y	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

		$?$	
x	y	c	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

			XOR
x	y	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	\boldsymbol{y}	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	y	\boldsymbol{c}	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers

x	y	c	\boldsymbol{s}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Addition of two 1-bit numbers (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(c) Circuit

(d) Graphical symbol
[Figure 3.1c-d from the textbook]

Addition of Multibit Unsigned Numbers

Analogy with addition in base 10

$$
\begin{array}{rlll}
+ & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
\mathbf{Y} & \mathrm{Y}_{2} & \mathrm{Y}_{0} \\
\hline & \mathbf{S}_{2} & \mathbf{S}_{1} & \mathbf{S}_{0}
\end{array}
$$

Analogy with addition in base 10

Analogy with addition in base 10

Analogy with addition in base 10

$$
\begin{array}{rlll}
\mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0} \\
+\quad & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
+ & \mathrm{Y}_{2} & \mathrm{Y}_{1} & \mathrm{Y}_{0} \\
\hline & \mathrm{~S}_{2} & \mathrm{~S}_{1} & \mathrm{~S}_{0}
\end{array}
$$

Analogy with addition in base 10

> given these
> 3 inputs

Analogy with addition in base 10

Analogy with addition in base 10

$$
\begin{aligned}
& \begin{array}{lllll}
\mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}
\end{array} \\
& \begin{aligned}
& \\
&+ \mathrm{x}_{2} \\
& \mathrm{X}_{1} \mathrm{x}_{0} \\
& \mathrm{Y}_{2} \mathrm{Y}_{1} \\
& \mathrm{y}_{0} \\
& \hline \mathbf{S}_{2} \\
& \hline \mathbf{S}_{1} \\
& \hline
\end{aligned}
\end{aligned}
$$

Analogy with addition in base 10

Addition of multibit numbers

Generated carries	1110				c_{i}	...
$X=x_{4} x_{3} x_{2} x_{1} x_{0}$	01111	(15) ${ }_{10}$	x_{i}	\ldots
$+Y=y_{4} y_{3} y_{2} y_{1} y_{0}$	+01010	$+(10)_{10}$	y_{i}	\ldots
$S=s_{4} s_{3} s_{2} s_{1} s_{0}$	11001	(25) ${ }_{10}$	s_{i}	\ldots

Bit position i
[Figure 3.2 from the textbook]

Problem Statement and Truth Table

Let's fill-in the two K-maps

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

Note that the textbook switched to the other way to draw a K-Map

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

Note that the textbook switched to the other way to draw a K-Map

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

c_{i}	x_{i}	y_{i}	c_{i+1}	s_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

[Figure 3.3c from the textbook]

This is called the Full-Adder

[Figure 3.3c from the textbook]

XOR Magic

$$
s_{i}=\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+\bar{x}_{i} \bar{y}_{i} c_{i}+x_{i} y_{i} c_{i}
$$

XOR Magic

$$
s_{i}=\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+\bar{x}_{i} \bar{y}_{i} c_{i}+x_{i} y_{i} c_{i}
$$

$$
\begin{aligned}
s_{i} & =\left(\bar{x}_{i} y_{i}+x_{i} \bar{y}_{i}\right) \bar{c}_{i}+\left(\bar{x}_{i} \bar{y}_{i}+x_{i} y_{i}\right) c_{i} \\
& =\left(x_{i} \oplus y_{i}\right) \bar{c}_{i}+\overline{\left(x_{i} \oplus y_{i}\right)} c_{i} \\
& =\left(x_{i} \oplus y_{i}\right) \oplus c_{i}
\end{aligned}
$$

XOR Magic

$$
s_{i}=\bar{x}_{i} y_{i} \bar{c}_{i}+x_{i} \bar{y}_{i} \bar{c}_{i}+\bar{x}_{i} \bar{y}_{i} c_{i}+x_{i} y_{i} c_{i}
$$

Can you prove this?

$$
\begin{aligned}
& s_{i}=\left(\bar{x}_{i} y_{i}+x_{i} \bar{y}_{i}\right) \bar{c}_{i}+\left(x_{i} \bar{y}_{i}+x_{i} y_{i}\right) c_{i} \\
&=\left(x_{i} \oplus y_{i}\right) \bar{c}_{i}+\left(x_{i} \oplus v_{i}\right) \\
& c_{i} \\
&=\left(x_{i} \oplus y_{i}\right) \oplus c_{i}
\end{aligned}
$$

XOR Magic

(s_{i} can be implemented in two different ways)

A decomposed implementation of the full-adder circuit

[Figure 3.4 from the textbook]

The Full-Adder Abstraction

The Full-Adder Abstraction

We can place the arrows anywhere

n-bit ripple-carry adder

[Figure 3.5 from the textbook]

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Example:

Computing 5+6 using a 5-bit adder

Example:

Computing 5+6 using a 5-bit adder

Design Example:

Create a circuit that multiplies a number by 3

How to Get 3A from A?

- $3 \mathrm{~A}=\mathrm{A}+\mathrm{A}+\mathrm{A}$
- $3 A=(A+A)+A$
- $3 A=2 A+A$

[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=?
$$

$542 \times 10=$?
$1245 \times 10=$?

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by $2 ?$

011 times $2=$?

101 times $2=?$

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2 ?
011 times $2=0110$

101 times $2=1010$

110011 times $2=1100110$

Binary Multiplication by 2

What happens when we multiply a number by 2 ?
011 times $2=0110$

101 times $2=1010$

110011 times $2=1100110$

You simply add a zero as the rightmost number

[Figure 3.6b from the textbook]

[Figure 3.6b from the textbook]

Questions?

THE END

