

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Fast Adders

CprE 281: Digital Logic Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- No HW is due next Monday
- HW 6 will be due on Monday Oct. 11.

Administrative Stuff

- Labs next week
- Mini-Project
- This is worth 3% of your grade (x2 labs)
- https://www.ece.iastate.edu/~alexs/classes/ 2021_Fall_281/labs/Project-Mini/

Quick Review

The problems in which row are easier to calculate?

The problems in which row are easier to calculate?

Why?

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100 \\
& =82+(99-64)+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100
\end{aligned}
$$

Does not require borrows

$$
=82+(99-64)+1-100
$$

9's Complement (subtract each digit from 9)

10's Complement

(subtract each digit from 9 and add 1 to the result)

Another Way to Do Subtraction

$$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

$$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+((99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =118-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =(1)-100 \quad \text { //Just delete the leading } 1 . \\
& =18 \quad \text { // No need to subtract 100. }
\end{aligned}
$$

1's Complement

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an n -bit positive number P .

Then, in 1's complement representation K is obtained by subtracting P from $2^{\mathrm{n}}-1$, namely

$$
K=\left(2^{n}-1\right)-P
$$

This means that K can be obtained by inverting all bits of P .

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an 8 -bit positive number P .
Then, in 1's complement representation K is obtained by subtracting P from $2^{8}-1$, namely

$$
\mathrm{K}=\left(2^{8}-1\right)-\mathrm{P}=255-\mathrm{P}
$$

This means that K can be obtained by inverting all bits of P .
Provided that P is between 0 and 127 , because the most significant bit must be zero to indicate that it is positive.

1's complement (subtract each digit from 1)

Circuit for negating a number stored in 1's complement representation

Circuit for negating a number stored in 1's complement representation

2's Complement

2's complement

Let K be the negative equivalent of an n-bit positive number P .

Then, in 2' s complement representation K is obtained by subtracting P from 2^{n}, namely

$$
K=2^{n}-P
$$

Deriving 2' s complement

For a positive n -bit number P , let K_{1} and K_{2} denote its 1's and 2' s complements, respectively.

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P} \\
& \mathrm{~K}_{2}=2^{\mathrm{n}}-\mathrm{P}
\end{aligned}
$$

Since $K_{2}=K_{1}+1$, it is evident that in a logic circuit the 2^{\prime} s complement can computed by inverting all bits of P and then adding 1 to the resulting 1 's-complement number.

Deriving 2' s complement

For a positive 8-bit number P , let K_{1} and K_{2} denote its 1's and 2' s complements, respectively.

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P}=255-\mathrm{P} \\
& \mathrm{~K}_{2}=2^{\mathrm{n}}-\mathrm{P}=256-\mathrm{P}
\end{aligned}
$$

Since $K_{2}=K_{1}+1$, it is evident that in a logic circuit the 2^{\prime} s complement can computed by inverting all bits of P and then adding 1 to the resulting 1 ' s-complement number.

Find the 2's complement of ...

0101

0010

0100
0111

Find the 2's complement of ...

0101
0010
1010
1101

0100
0111
1011
1000

Invert all bits.

Find the 2's complement of ...

0100

Then add 1.

Circuit for negating a number stored in 2's complement representation

Circuit for negating a number stored in 2's complement representation

Addition of two numbers stored in 2's complement representation

There are four cases to consider

- (+5) + (+2)
- (-5) $+(+2)$
- (+5) + (-2)
- (-5) $+(-2)$

There are four cases to consider

- (+5) + (+2)
- (-5) + (+2)
- (+5) + (-2)
- (-5) $+(-2)$
negative plus positive
positive plus negative
positive plus positive
negative plus negative

Positive plus positive

$(+5)$
$+(+2)$
$(+7)$

$b_{3} b_{2} b_{1} b_{0}$	2 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

Negative plus positive

(-5)
$+(+2)$
(-3)
---:
+0010
1101

$b_{3} b_{2} b_{1} b_{0}$	$2 '$'s complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

Positive plus negative

$(+5)$
$+(-2)$
$(+3)$
---:
+1110

$b_{3} b_{2} b_{1} b_{0}$	2 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

Negative plus negative

[Figure 3.9 from the textbook]

Subtraction of two numbers stored in 2's complement representation

There are four cases to consider

- (+5) - (+2)
- (-5) - (+2)
- (+5) - (-2)
- (-5) - (-2)

There are four cases to consider

- (+5) - (+2)
- (-5) - (+2)
negative minus positive
- (+5) - (-2)
positive minus negative
- (-5) - (-2)
negative minus negative

There are four cases to consider

- (+5) - (+2)
- (-5) - (+2)
- (+5) - (-2)
- (-5) - (-2)

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- (-5) - $(+2)=(-5)+(-2)$
- $(+5)-(-2)=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- (-5) - $(+2)=(-5)+(-2)$
- (+5) - (-2) $=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$

We can change subtraction into addition ...

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- (-5) - $(+2)=(-5)+(-2)$
- (+5) - (-2) $=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$
... if we negate the second number.

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- (-5) - $(+2)=(-5)+(-2)$
- (+5) - (-2) $=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$

There are the four addition cases (arranged in a shuffled order)

Positive minus positive

$$
\begin{array}{r}
(+5) \\
-(+2) \\
\hline(+3)
\end{array} \quad-0101
$$

$b_{3} b_{2} b_{1} b_{0}$	2 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.10 from the textbook]

Convert to: Positive plus negative

				$b_{3} b_{2} b_{1} b_{0}$	2's complement
				0111	+7
				0110	+6
				0101	+5
	-0101			0100	+4
$\underline{-(+2)}$	-0010	+1110	$\underline{+(-2)}$	0011	+3
(+3)		10011	(+3)	0010	+2
		\wedge		0001	+1
				0000	+0
		gnore		1000	-8
				1001	-7
				1010	-6
				1011	-5
				1100	-4
				1101	-3
				1110	-2
				1111	-1

[Figure 3.10 from the textbook]

Convert to: Positive plus negative

[Figure 3.10 from the textbook]

Graphical interpretation of four-bit 2's complement numbers

$\begin{array}{ll}\text { (a) The number circle } & \text { (b) Subtracting } 2 \text { by adding its } 2 \text { 's complement }\end{array}$
[Figure 3.11 from the textbook]

Negative minus positive

[Figure 3.10 from the textbook]

Convert to: Negative plus negative

[Figure 3.10 from the textbook]

Positive minus negative

$b_{3} b_{2} b_{1} b_{0}$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.10 from the textbook]

Convert to: Positive plus positive

[Figure 3.10 from the textbook]

Negative minus negatie

(-5)
$-(-2)$
(-3)

$b_{3} b_{2} b_{1} b_{0}$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.10 from the textbook]

Convert to: Negative plus positive

[Figure 3.10 from the textbook]

Take Home Message

- Subtraction can be performed by simply negating the second number and adding it to the first, regardless of the signs of the two numbers.
- Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

[Figure 3.12 from the textbook]

XOR Tricks

control

XOR as a repeater

XOR as a repeater

XOR as an inverter

XOR as an inverter

Addition: when control = 0

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control = 0

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Overflow Detection

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{l}
0111 \\
0010 \\
\hline 1001
\end{array} \\
& \begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
101101
\end{array} \\
& \begin{array}{r}
(-7) \\
+\quad+\quad 1001 \\
\hline(-9) \\
\hline 10111
\end{array}
\end{aligned}
$$

Examples of determination of overflow

$$
\begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array}+\begin{array}{r}
0111 \\
\hline 10101
\end{array}
$$

In 2 's complement, both +9 and -9 are not representable with 4 bits.
[Figure 3.13 from the textbook]

Examples of determination of overflow

	01100		00000
(+7)	0111	(-7)	1001
+ (+2)	0010	+ (+2)	+ 0010
$(+9)$	1001	(-5)	1011
	11100		10000
(+7)	+ 0111	(-7)	1001
+ (-2)	1110	+ (-2)	+1110
$(+5)$	10101	(-9)	10111

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{l}
c_{4}=0 \\
c_{3}=1
\end{array} \\
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9) \\
+\quad 0111 \\
\hline 001001
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c_{4}=0 \\
c_{3}=0
\end{array} \\
& c_{4}=1 \\
& c_{3}=1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
10000 \\
(-7) \\
+\quad \begin{array}{r}
1001 \\
(-9)
\end{array} \quad 1110 \\
\hline 10111
\end{array} \\
& \begin{array}{l}
c_{4}=1 \\
c_{3}=0
\end{array}
\end{aligned}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

Overflow occurs only in these two cases.

Examples of determination of overflow

$$
\text { Overflow }=\mathrm{c}_{3} \overline{\mathrm{c}}_{4}+\overline{\mathrm{c}}_{3} \mathrm{c}_{4}
$$

Examples of determination of overflow

$$
\text { Overflow }=\underbrace{\mathrm{c}_{3} \overline{\mathrm{c}}_{4}+\overline{\mathrm{c}}_{3} \mathrm{c}_{4}}_{\text {XOR }}
$$

Calculating overflow for 4-bit numbers with only three significant bits

$$
\begin{aligned}
\text { Overflow } & =c_{3} \bar{c}_{4}+\bar{c}_{3} c_{4} \\
& =c_{3} \oplus c_{4}
\end{aligned}
$$

Calculating overflow for n-bit numbers with only $\mathrm{n}-1$ significant bits

$$
\text { Overflow }=c_{n-1} \oplus c_{n}
$$

Detecting Overflow

Detecting Overflow (with one extra XOR)

A ripple-carry adder

How long does it take to compute all sum bits and all carry bits?

Delays through the modular implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram
[Figure 3.4 from the textbook]

Delays through the modular implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram

Delays through the modular implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram

How long does it take to compute all sum bits and all carry bits in this case?

It takes $3 n$ gate delays?

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

How long does it take to compute all sum bits and all carry bits?

It takes 2 n gate delays?

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the previous stage will be equal to 0 or 1.

Can we perform addition even faster?

The goal is to evaluate very fast if the carry from the previous stage will be equal to 0 or 1.

To accomplish this goal we will have to redesign the full-adder circuit yet again.

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

Decomposing the Carry Expression

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{gathered}
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{gathered}
$$

Another Way to Draw the Full-Adder Circuit

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

Another Way to Draw the Full-Adder Circuit

$$
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right)}_{p_{i}^{\prime}} \boldsymbol{c}_{\boldsymbol{i}}
$$

Another Way to Draw the Full-Adder Circuit

g - generate
p-propagate

$$
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Yet Another Way to Draw It (Just Rotate It)

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

2-bit ripple-carry adder: 5 gate delays (1+2+2)

n-bit ripple-carry adder: $\mathbf{2 n + 1}$ gate delays

n-bit Ripple-Carry Adder

- It takes 1 gate delay to generate all g_{i} and p_{i} signals
- +2 more gate delays to generate carry 1
- +2 more gate delay to generate carry 2
- +2 more gate delay to generate carry \mathbf{n}
- Thus, the total delay through an n -bit ripple-carry adder is $\mathbf{2 n + 1}$ gate delays!

n-bit Ripple-Carry Adder

- It takes 1 gate delay to generate all g_{i} and p_{i} signals
- +2 more gate delays to generate carry 1
- +2 more gate delay to generate carry 2
- +2 more gate delay to generate carry \mathbf{n}
- Thus, the total delay through an \mathbf{n}-bit ripple-carry adder is $\mathbf{2 n + 1}$ gate delays!

This is slower by 1 than the original design?!

A carry-lookahead adder

Decomposing the Carry Expression

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}+\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{i}} \\
& c_{i+1}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{gathered}
c_{i+1}=\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}+\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{i}} \\
\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{y_{i}}+\underbrace{(\underbrace{\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}}_{\boldsymbol{i}})}_{p_{i}} \boldsymbol{c}_{\boldsymbol{i}}
\end{gathered}
$$

It takes 1 gate delay to compute all p_{i} signals

[Figure 3.14 from the textbook]

It takes 1 gate delay to compute all g_{i} signals

[Figure 3.14 from the textbook]

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}+\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{i}} \\
& c_{i+1}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=\underbrace{\boldsymbol{x}_{i} \boldsymbol{y}_{i}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{i}\right.}_{p_{i}}) c_{i} \\
& c_{i+1}=g_{i}+p_{i} c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
c_{i+1} & =x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
c_{i+1} & =\underbrace{x_{i} y_{i}}_{g_{i}}+\underbrace{\left(x_{i}+y_{i}\right.}_{p_{i}}) c_{i} \\
c_{i+1} & =g_{i}+p_{i} c_{i}
\end{aligned}
$$

recursive
expansion of
c_{i}

$$
c_{i+1}=g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right.
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=\underbrace{x_{i} y_{i}}_{g_{i}}+\underbrace{\left(x_{i}+y_{i}\right.}_{p_{i}}) c_{i} \\
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& c_{i+1}=g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
& c_{i+1}=g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} c_{i-1}
\end{aligned}
$$

Now we can Build a Carry-Lookahead Adder

[Figure 3.15 from the textbook]

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

Carry for the first stage

$$
c_{1}=g_{0}+p_{0} c_{0}
$$

Carry for the first stage

Carry for the second stage

$$
c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
$$

Carry for the second stage

Carry for the first two stages

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

Carry for the first two stages

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+\underline{p_{1}} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

Carry for the first two stages

$$
\begin{aligned}
c_{1} & =g_{0}+p_{0} c_{0} \\
c_{2} & =g_{1}+\underline{p_{1}} g_{0}+\underline{p_{1}} p_{0} c_{0} \\
& =g_{1}+p_{1}(\underbrace{\left(g_{0}+p_{0} c_{0}\right.}_{c_{1}})
\end{aligned}
$$

Carry for the first two stages

$$
\begin{aligned}
c_{1} & =g_{0}+p_{0} c_{0} \\
c_{2} & =g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& =g_{1}+p_{1}(\underbrace{g_{0}+p_{0} c_{0}}_{c_{1}}) \\
& =g_{1}+p_{1} c_{1}
\end{aligned}
$$

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

It takes $\mathbf{3}$ gate delays to generate \mathbf{c}_{1}

It takes $\mathbf{3}$ gate delays to generate $\mathbf{c}_{\mathbf{2}}$

The first two stages of a carry-lookahead adder

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{1}}$

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{2}}$

N-bit Carry-Lookahead Adder

- It takes 1 gate delay to generate all g_{i} and p_{i} signals
- It takes 2 more gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits
- Thus, the total delay through an n-bit carry-lookahead adder is only $\mathbf{4}$ gate delays!

Expanding the Carry Expression

$$
\begin{aligned}
c_{i+1}= & g_{i}+p_{i} c_{i} \\
c_{1}= & g_{0}+p_{0} c_{0} \\
c_{2}= & g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
c_{3}= & g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
\cdots & \\
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

Expanding the Carry Expression

$$
\begin{aligned}
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

$$
c_{8}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}
$$

Even this takes $+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}$ ${ }^{\text {only } 3 \text { gate delays }}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0}$ $+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}$

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

A hierarchical carry-lookahead adder

A hierarchical carry-lookahead adder

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
& c_{8}= g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
&+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
&+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
&+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

The Hierarchical Carry Expression

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathbf{G}_{0} \xrightarrow{c_{8}=} \begin{array}{l}
\begin{array}{l}
g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0}
\end{array} \\
\\
\mathbf{P}_{0} \xrightarrow{+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{7} p_{0} c_{0}}{ }_{\text {2-gate delays delays }} \\
c_{8}
\end{array} G_{0}+P_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

The Hierarchical Carry Expression

The Hierarchical Carry Expression

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathrm{c}_{8}= & \mathrm{g}_{7}+\mathrm{p}_{7} \mathrm{~g}_{6}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~g}_{5}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{~g}_{4} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{~g}_{3}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} p_{3} \mathrm{~g}_{2} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0} \\
& \\
\mathrm{c}_{16}= & g_{15}+\mathrm{p}_{15} \mathrm{~g}_{14}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{~g}_{13}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{~g}_{12} \\
& +\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{~g}_{11}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{~g}_{10} \\
& +\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{p}_{10} \mathrm{~g}_{9}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{p}_{10} \mathrm{p}_{9} \\
& +\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{p}_{10} \mathrm{p}_{9} \mathrm{p}_{8} \mathrm{c}_{8}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathrm{c}_{8}= & \mathrm{g}_{7}+\mathrm{p}_{7} \mathrm{~g}_{6}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~g}_{5}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{~g}_{4} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} p_{4} \mathrm{~g}_{3}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} p_{4} p_{3} g_{2} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} p_{2} \mathrm{~g}_{1}+\mathrm{p}_{7} \mathrm{p}_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0}
\end{aligned}
$$

The same expression, just add 8 to all subscripts

$$
\begin{aligned}
\mathrm{c}_{16}= & g_{15}+p_{15} g_{14}+p_{15} p_{14} g_{13}+p_{15} p_{14} p_{13} g_{12} \\
& +p_{15} p_{14} p_{13} p_{12} g_{11}+p_{15} p_{14} p_{13} p_{12} p_{11} g_{10} \\
& +p_{15} p_{14} p_{13} p_{12} p_{11} p_{10} g_{9}+p_{15} p_{14} p_{13} p_{12} p_{11} p_{10} p_{9} g_{8} \\
& +p_{15} p_{14} p_{13} p_{12} p_{11} p_{10} p_{9} p_{8} c_{8}
\end{aligned}
$$

The Hierarchical Carry Expression

3-gate delays

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathrm{c}_{8}= & \mathrm{g}_{7}+\mathrm{p}_{7} \mathrm{~g}_{6}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~g}_{5}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{~g}_{4} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{~g}_{3}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{~g}_{2} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0}
\end{aligned}
$$

3-gate delays

The Hierarchical Carry Expression

$$
c_{8}=G_{0}+P_{0} c_{0}
$$

The Hierarchical Carry Expression

$c_{8}=G_{0}+P_{0} c_{0}$
3-gate delays

The Hierarchical Carry Expression

$$
c_{8}=\frac{G_{0}+P_{0} c_{0}}{\text { 4-gate delays }}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
& c_{8}=G_{0}+P_{0} c_{0} \\
& \text { 3-gate delays }
\end{aligned} \quad \begin{aligned}
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \\
& \quad \text { 3-gate delays }
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8}= & G_{0}+P_{0} c_{0} \\
c_{16}= & G_{1}+P_{1} c_{8} \\
= & G_{1}+P_{1} \underbrace{}_{0}+P_{1} P_{0} c_{0} \\
& 3 \text {-gate delays }
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+\underbrace{}_{1} P_{1} G_{0}+P_{1} P_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
& c_{8}=G_{0}+P_{0} c_{0} \\
& c_{16}=\frac{G_{1}+P_{1} c_{8}}{} \\
&=\frac{G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0}}{5 \text {-gate delays }}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \\
c_{24} & =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0} \\
c_{32} & =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \quad \text { 5-gate delays } \\
c_{24} & =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0} \quad \text { 5-gate delays } \\
c_{32} & =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
\end{aligned}
$$

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is $\mathbf{8}$ gates:
- 3 to generate all Gi and Pi signals
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Hierarchical CLA Adder Carry Logic

C8 - 4 gate delays
C16-5 gate delays
C24-5 Gate delays
C32-5 Gate delays
C8 - 4 gate delays
C16-5 gate delays
C24-5 Gate delays
C32-5 Gate delays
C8 - 4 gate delays
C16-5 gate delays
C24-5 Gate delays
C32 -5 Gate delays
C8 - 4 gate delays
C16-5 gate delays
C24-5 Gate delays
C32 -5 Gate delays

SECOND
LEVEL
HIERARCHY

FIRST LEVEL HIERARCHY

Hierarchical
 CLA
 Critical Path

C1 - 2 gate delays
C9 - 6 gate delays
C17-7 gate delays
C25-7 Gate delays

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is $\mathbf{8}$ gates:
- 3 to generate all Gi and Pi signals
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

2 more gate delays for the internal carries within a block

2 more gate delays for the internal carries within a block

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is $\mathbf{8}$ gates:
- 3 to generate all Gi and Pi signals
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Questions?

THE END

