

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplication

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- No HW is due today
- HW 6 will be due on Monday Oct. 11.

Administrative Stuff

- Labs this week
- Mini-Project
- This is worth 3% of your grade (x2 labs)
- https://www.ece.iastate.edu/~alexs/classes/ 2021_Fall_281/labs/Project-Mini/

Quick Review

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

How long does it take to compute all sum bits and all carry bits?

It takes 2n gate delays using a ripple-carry adder?

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i) c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

 $c_{i+1} = x_i y_i + (x_i + y_i)c_i$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

$$g_i \qquad p_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

$$g_i \qquad p_i$$

Yet Another Way to Draw It (Just Rotate It)

Now we can Build a Ripple-Carry Adder

[[]Figure 3.14 from the textbook]

Now we can Build a Ripple-Carry Adder

 $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$

[Figure 3.14 from the textbook]

The delay is 5 gates (1+2+2)

n-bit ripple-carry adder: 2n+1 gate delays

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

$$g_i \qquad p_i$$

$$c_{i+1} = g_i + p_i c_i$$

 $c_{i+1} = g_i + p_i(g_{i-1} + p_{i-1}c_{i-1})$

 $= g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$

Carry for the first two stages

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

The first two stages of a carry-lookahead adder

It takes 3 gate delays to generate c₁

It takes 3 gate delays to generate c₂

The first two stages of a carry-lookahead adder

It takes 4 gate delays to generate s₁

It takes 4 gate delays to generate s₂

N-bit Carry-Lookahead Adder

- It takes 3 gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits

 Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

...

 $c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4}$ + $p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2}$ + $p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$ + $p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$

Expanding the Carry Expression

$$c_{i+1} = g_i + p_i c_i$$

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$

...

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$$

Even this takes $+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$
only 3 gate delays
 $+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$
 $+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

[Figure 3.17 from the textbook]

 $c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$ + $p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$ + $p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$ + $p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4} + p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4} + p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4} + p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_8 = G_0 + P_0 c_0$$

 $c_8 = g_7 + p_7g_6 + p_7p_6g_5 + p_7p_6p_5g_4$ $+ p_7p_6p_5p_4g_3 + p_7p_6p_5p_4p_3g_2$ $+ p_7p_6p_5p_4p_3p_2g_1 + p_7p_6p_5p_4p_3p_2p_1g_0$ $+ p_7p_6p_5p_4p_3p_2p_1p_0c_0$

 $c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12}$ $+ p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10}$ $+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8}$ $+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$

 $c_8 = g_7 + p_7g_6 + p_7p_6g_5 + p_7p_6p_5g_4$ $+ p_7p_6p_5p_4g_3 + p_7p_6p_5p_4p_3g_2$ $+ p_7p_6p_5p_4p_3p_2g_1 + p_7p_6p_5p_4p_3p_2p_1g_0$ $+ p_7p_6p_5p_4p_3p_2p_1p_0c_0$

The same expression, just add 8 to all subscripts

 $c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12}$ $+ p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10}$ $+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8}$ $+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$

3-gate delays

 $c_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}g_{13} + p_{15}p_{14}p_{13}g_{12}$ $+ p_{15}p_{14}p_{13}p_{12}g_{11} + p_{15}p_{14}p_{13}p_{12}p_{11}g_{10}$ $+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}g_{9} + p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}g_{8}$ $+ p_{15}p_{14}p_{13}p_{12}p_{11}p_{10}p_{9}p_{8}c_{8}$

 $c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4$ $+ p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2$ $+ p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$ $+ p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$

3-gate delays

$$c_8 = G_0 + P_0 c_0$$

$$c_{16} = G_1 + P_1 c_8 = G_1 + P_1 G_0 + P_1 P_0 c_0$$

$$c_{24} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$$

 $c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0$

 $c_8 = G_0 + P_0 c_0 \qquad \qquad 4\text{-gate delays}$

 $c_{16} = G_1 + P_1 c_8$ 5-gate delays = $G_1 + P_1 G_0 + P_1 P_0 c_0$

 $c_{24} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$ 5-gate delays

5-gate delays

 $c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0$

[Figure 3.17 from the textbook]

[Figure 3.17 from the textbook]

FIRST LEVEL HIERARCHY

FIRST LEVEL HIERARCHY

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is 8 gates:
 - 3 to generate all Gj and Pj signals
 - +2 to generate c8, c16, c24, and c32
 - +2 to generate internal carries in the blocks
 - +1 to generate the sum bits (one extra XOR)

Decimal Multiplication by 10

What happens when we multiply a number by 10?

4 x 10 = ?

542 x 10 = ?

1245 x 10 = ?

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 $4 \times 10 = 40$

542 x 10 = 5420

 $1245 \times 10 = 12450$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

 $4 \times 10 = 40$

542 x 10 = 5420

1245 x 10 = 12450

You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by 10?

14 / 10 = ?

540 / 10 = ?

1240 / 10 = ?

Decimal Division by 10

What happens when we divide a number by 10?

14 / 10 = 1 //integer division

540 / 10 = 54

1240 / 10 = 124

You simply delete the rightmost number

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number

What happens when we multiply a number by 4?

011 times 4 = ?

101 times 4 = ?

110011 times 4 = ?

What happens when we multiply a number by 4?

011 times 4 = 01100

101 times 4 = 10100

110011 times 4 = 11001100

add two zeros in the last two bits and shift everything else to the left

Binary Multiplication by 2^N

What happens when we multiply a number by 2^{N} ?

011 times 2^N = 01100...0 // add N zeros

101 times 4 = 10100...0 // add N zeros

110011 times 4 = 11001100...0 // add N zeros

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = ?

1010 divides by 2 = ?

110011 divides by 2 = ?

Binary Division by 2

What happens when we divide a number by 2?

0110 divided by 2 = 011

1010 divides by 2 = 101

110011 divides by 2 = 11001

You simply delete the rightmost number

Decimal Multiplication By Hand

<u>x 4265</u>

Multiplication of two unsigned binary numbers

Binary Multiplication By Hand

[Figure 3.34a from the textbook]
Binary Multiplication By Hand

Multiplicand M Multiplier Q	(14) (11)	$\begin{array}{c} 1110 \\ \times 1011 \end{array}$
Partial product 0		1110 + 1110
Partial product 1		$ \begin{array}{c c} 10101 \\ + 0000 \end{array} $
Partial product 2		01010 + 1110
Product P	(154)	10011010

Binary Multiplication By Hand

				<i>m</i> ₃	m_2	m_1	m_0
			×	<i>q</i> ₃	<i>q</i> ₂	q_1	q_0
Partial product 0				$m_3 q_0$	$m_2 q_0$	$m_1 q_0$	$m_0 q_0$
		+	$m_3 q_1$	$m_2 q_1$	$m_1 q_1$	$m_0 q_1$	en la sid
Partial product 1		<i>PP</i> 1 ₅	<i>PP</i> 1 ₄	<i>PP</i> 1 ₃	<i>PP</i> 1 ₂	<i>PP</i> 1 ₁	oils bio
	+resentable	$m_3 q_2$	$m_2 q_2$	$m_1 q_2$	$m_0 q_2$	orgn	Accordi
Partial product 2	PP2 ₆	<i>PP</i> 2 ₅	<i>PP</i> 2 ₄	<i>PP</i> 2 ₃	<i>PP</i> 2 ₂	120 1.7	24. 190
	$+ m_3 q_3$	$m_2 q_3$	$m_1 q_3$	$m_0 q_3$	ļ	1000	
Product P	<i>p</i> ₇ <i>p</i> ₆	<i>P</i> ₅	<i>p</i> ₄	<i>p</i> ₃	p_2	p_1	p_0

[Figure 3.34c from the textbook]

Figure 3.35. A 4x4 multiplier circuit.

Multiplication of two signed binary numbers

Sign extension for positive numbers

 If we want to represent the same positive number with more bits, we simply pad it on the left with zeros.

• For example:

0110	(+6 with 4-bits)
00110	(+6 with 5-bits)
000110	(+6 with 6-bits)

Sign extension for negative numbers

• If we want to represent the same negative number with more bits, we simply pad it on the left with ones.

• For example:

1011	(-5 with 4-bits)
11011	(-5 with 5-bits)
111011	(-5 with 6-bits)

Positive Multiplicand Example

Multiplicand M Multiplier Q	(+14) (+11)	01110 × 01011
Partial product 0		0001110
		+ 001110
Partial product 1		0010101
		+000000
Partial product 2		$\begin{array}{c} 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$
Partial product 3		
i artiai product 5		+ 000000
Product P	(+154)	0010011010

[Figure 3.36a in the textbook]

Positive Multiplicand Example

Multiplicand M Multiplier Q	(+14) (+11)	01110 × 01011
Partial product 0	add an extra bit to avoid overflow	$\begin{array}{r} 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \\ + \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \end{array}$
Partial product 1		$\begin{array}{r} 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ + \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\ \end{array}$
Partial product 2		0001010 + 001110
Partial product 3	+	0010011 000000
Product P	(+154)	0010011010

Negative Multiplicand Example

Multiplicand M	(-14)	10010
Multiplier Q	(+11)	× 01011
Partial product 0		1110010
		+ 110010
Partial product 1		1101011
		+000000
Partial product 2		1110101
		+ 110010
Partial product 3		1101100
		+ 000000
Product P	(-154)	1 1 0 1 1 0 0 1 1 0

Negative Multiplicand Example

Multiplicand M Multiplier Q	(-14) (+11)	10010 × 01011
Partial product 0	add an extra bit to avoid overflow	+ 110010 + 110010
Partial product 1	but now it is 1	1101011 + 000000
Partial product 2	-	1110101
Partial product 3	 	1101100
Product P	(-154)	1101100110

What if the Multiplier is Negative?

- Negate both numbers.
- This will make the multiplier positive.
- Then proceed as normal.
- This will not affect the result.
- Example: $5^{*}(-4) = (-5)^{*}(4) = -20$

Arithmetic Comparison Circuits

Truth table for a one-bit digital comparator

Inp	uts	Outputs		
A	B	A > B	A = B	A < B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

[http://en.wikipedia.org/wiki/Digital_comparator]

A one-bit digital comparator circuit

Inp	uts	Outputs		
A	B	A > B	A = B	A < B
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Truth table for a two-bit digital comparator

	Inputs Outputs					
A_1	A_0	B_1	B_0	A < B	A = B	A > B
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

[http://en.wikipedia.org/wiki/Digital_comparator]

A two-bit digital comparator circuit

[http://forum.allaboutcircuits.com/showthread.php?t=10561]

[Figure 3.45 from the textbook]

Compare 6 with 5 by subtraction (6-5).

Binary Coded Decimal (BCD)

Table of Binary-Coded Decimal Digits

Decimal digit	BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

[Figure 3.38a in the textbook]

The result is greater than 9, which is not a valid BCD number

[Figure 3.38a in the textbook]

[Figure 3.38a in the textbook]

[Figure 3.38b in the textbook]

The result is 1, but it should be 7

[Figure 3.38b in the textbook]

[Figure 3.38b in the textbook]

Why add 6?

• Think of BCD addition as a mod 16 operation

• Decimal addition is mod 10 operation

BCD Arithmetic Rules

$\mathsf{Z}=\mathsf{X}+\mathsf{Y}$

If Z <= 9, then S=Z and carry-out = 0

If Z > 9, then S=Z+6 and carry-out =1

Block diagram for a one-digit BCD adder

[Figure 3.39 in the textbook]

How to check if the number is > 9?

- 7 0111
- 8 1000
- 9 1001
- 10 1010
- 11 1011
- 12 1100
- 13 1101
- 14 1110
- 15 1111

A four-variable Karnaugh map

x1	x2	x3	x4		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1

How to check if the number is > 9?

z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1

How to check if the number is > 9?

z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1

 $\mathbf{f} = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$

How to check if the number is > 9?

z3	z2	z1	z0		
0	0	0	0	m0	0
0	0	0	1	m1	0
0	0	1	0	m2	0
0	0	1	1	m3	0
0	1	0	0	m4	0
0	1	0	1	m5	0
0	1	1	0	m6	0
0	1	1	1	m7	0
1	0	0	0	m8	0
1	0	0	1	m9	0
1	0	1	0	m10	1
1	0	1	1	m11	1
1	1	0	0	m12	1
1	1	0	1	m13	1
1	1	1	0	m14	1
1	1	1	1	m15	1

 $\mathbf{f} = \mathbf{z}_3 \mathbf{z}_2 + \mathbf{z}_3 \mathbf{z}_1$

In addition, also check if there was a carry

$$f = carry-out + z_3 z_2 + z_3 z_1$$

Verilog code for a one-digit BCD adder

```
module bcdadd(Cin, X, Y, S, Cout);
input Cin;
input [3:0] X,Y;
output reg [3:0] S;
output reg Cout;
reg [4:0] Z;
```

```
always@ (X, Y, Cin)
begin
    Z = X + Y + Cin;
    if (Z < 10)
        {Cout, S} = Z;
    else
        {Cout, S} = Z + 6;
end</pre>
```

endmodule

[Figure 3.4b from the textbook]

It reduces to a half-adder.

But if we only need the sum bit ...

... it reduces to an XOR.

Questions?

THE END