

## CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

## Mealy State Model

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

## Administrative Stuff

- Homework 10 is due today
- Begin to formulate your final project ideas


## The general form of a synchronous sequential circuit


[ Figure 6.1 from the textbook ]

## Moore Type



## Mealy Type



## Sample Problem

Implement a 11 detector. In other words, the output should be equal to 1 if two consecutive 1's have been detected on the input line.

The output should become 1 as soon as the second 1 is detected in the input.

## Moore Machine Implementation



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$

| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$

| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$

| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | $\square 1$ | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |

## Inferring the States



Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: \begin{array}{llllllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$
$z: 0$

[ Figure 6.8 from the textbook]

## The New and Improved Circuit Diagram

$$
\begin{gathered}
Y_{1}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right)=w \\
Y_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right)=w y_{1} \\
z\left(\mathrm{y}_{2}, \mathrm{y}_{1}\right)=y_{2}
\end{gathered}
$$


[ Figure 6.17 from the textbook ]

## Mealy Machine Implementation

## State diagram of an FSM that realizes the task


[ Figure 6.23 from the textbook ]

## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w: \square$ |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |  |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| Output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| Output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathfrak{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathfrak{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathfrak{t}_{0}$ | $\mathfrak{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathfrak{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathfrak{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathfrak{t}_{0}$ | $\mathfrak{t}_{1}$ | $\mathfrak{t}_{2}$ | $\mathfrak{t}_{3}$ | $\mathfrak{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathfrak{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathfrak{t}_{0}$ | $\mathfrak{t}_{1}$ | $\mathfrak{t}_{2}$ | $\mathfrak{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathfrak{t}_{7}$ | $\mathfrak{t}_{8}$ | $\mathfrak{t}_{9}$ | $\mathfrak{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathfrak{t}_{0}$ | $\mathfrak{t}_{1}$ | $\mathfrak{t}_{2}$ | $\mathfrak{t}_{3}$ | $\mathfrak{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |



## Let's Do a Simulation

| Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
| output | $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |



## Now Let's Do the State Table for this FSM



| Present <br> state | Next state |  |
| :---: | :---: | :---: |
|  | $w=0 \quad w=1$ | Output $z$ |
| A |  |  |
| B |  | $w=1$ |

## Now Let's Do the State Table for this FSM



| Present <br> state | Next state |  | Output $z$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| A | A | B | 0 | 0 |
| B | A | B | 0 | 1 |

## The State Table for this FSM

| Present <br> state | Next state |  | Output $z$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| A | A | B | 0 | 0 |
| B | A | B | 0 | 1 |

## Let's Do the State-assigned Table

| Present <br> state | Next state |  | Output $z$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| A | A | B | 0 | 0 |
| B | A | B | 0 | 1 |


| Present <br> state | Next state |  | Output |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| $y$ | $Y$ | $Y$ | $z$ | $z$ |
| A | 0 |  |  |  |
| B |  |  |  |  |

## Let's Do the State-assigned Table

| Present <br> state | Next state |  | Output $z$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| A | A | B | 0 | 0 |
| B | A | B | 0 | 1 |


| Present <br> state | Next state |  | Output |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| $y$ | $Y$ | $Y$ | $z$ | $z$ |
| A | 0 | 0 | 1 | 0 |

## The State-assigned Table

| Present <br> state | Next state |  | Output |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| $y$ | $Y$ | $Y$ | $z$ | $z$ |
| A | 0 | 0 | 1 | 0 |

[ Figure 6.25 from the textbook ]

## The State-assigned Table

| Present <br> state | Next state |  | Output |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| $y$ | $Y$ | $Y$ | $z$ | $z$ |
| A | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |


| $\mathrm{Y}=\mathrm{D}=\mathrm{W}$ |
| :---: |

$\mathrm{Z}=\mathrm{Wy}$
[ Figure 6.25 from the textbook ]

## The State-assigned Table

| Present <br> state | Next state |  | Output |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $w=0$ | $w=1$ |
| $y$ | $Y$ | $Y$ | $z$ | $z$ |
| B | 0 | 0 | 1 | 0 |

$$
Y=\mathrm{D}=\mathrm{w} \quad \mathrm{Z}=\mathrm{w} \mathrm{y}
$$

This assumes D flip-flop
[ Figure 6.25 from the textbook ]

## Circuit Implementation of the FSM



$$
\mathrm{Y}=\mathrm{D}=\mathrm{w} \quad \mathrm{z}=\mathrm{wy}
$$

[ Figure 6.26 from the textbook ]

## Circuit \& Timing Diagram


(a) Circuit


What if we wanted the output signal to be delayed by 1 clock cycle?

## Circuit Implementation of the Modified FSM


[ Figure 6.27a from the textbook]

## Circuit Implementation of the Modified FSM



This flip-flop delays the
output signal by one clock cycle
[ Figure 6.27a from the textbook ]

## We Have Seen This Diagram Before

$$
\begin{gathered}
Y_{1}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right)=w \\
Y_{2}\left(\mathrm{w}, \mathrm{y}_{2}, \mathrm{y}_{1}\right)=w y_{1} \\
z\left(\mathrm{y}_{2}, \mathrm{y}_{1}\right)=y_{2}
\end{gathered}
$$


[ Figure 6.17 from the textbook]

## Circuit \& Timing Diagram


(a) Circuit

[ Figure 6.27 from the textbook]

## The general form of a synchronous sequential circuit


[ Figure 6.1 from the textbook ]

## Moore Type



## Mealy Type



## Moore

## Mealy



## Moore




Notice that the output of the Moore machine is delayed by one clock cycle


Notice that the output of the Moore machine is delayed by one clock cycle

Mealy | Clock cycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output |  |  |  |  |  |  |  |  |  |  |  |  |
| $z:$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |  |

Moore

| Clockcycle: | $\mathrm{t}_{0}$ | $\mathrm{t}_{1}$ | $\mathrm{t}_{2}$ | $\mathrm{t}_{3}$ | $\mathrm{t}_{4}$ | $\mathrm{t}_{5}$ | $\mathrm{t}_{6}$ | $\mathrm{t}_{7}$ | $\mathrm{t}_{8}$ | $\mathrm{t}_{9}$ | $\mathrm{t}_{10}$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| input | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| output | $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |

## Questions?

## More slides for <br> the State Assignment Problem

## Example \#2

## Register Swap Controller


[ Figure 6.10 from the textbook ]

## Register Swap Controller



Design a Moore machine control circuit for swapping the contents of registers R1 and R2 by using R3 as a temporary.

## State Diagram


[ Figure 6.11 from the textbook ]

## Animated Register Swap



## Animated Register Swap



These are the original values of the 8-bit registers

## Animated Register Swap



For clarity, only inputs that are equal to 1 will be shown.

## Animated Register Swap



## State Diagram


[ Figure 6.11 from the textbook ]

## Some Questions

- How many flip-flops are we going to use?
- How many logic expressions do we need to find?




| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | $\mathrm{R} 2{ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A |  |  |  |  |  |  |  |  |  |
| B |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |



| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

As we saw before, we can expect that some state encodings will be better than others.

We will consider three encoding schemes.

## Encoding \#1: $A=00, B=01, C=10, D=11$

(Uses Two Flip-Flops)

## State Table

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1}$ in | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State-Assigned Table

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R1} \mathrm{in}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $R 3_{\text {in }}$ | Done |
| A B C D |  |  |  |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.13$ from the textbook ]

## State Table

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1}$ in | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State Assigned Table

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 |  |  |  |  |  |  |  |  |  |
| B | 01 |  |  |  |  |  |  |  |  |  |
| C | 10 |  |  |  |  |  |  |  |  |  |
| D | 11 |  |  |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.13$ from the textbook ]

## State Table

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State Assigned Table

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0 \quad w=1$ |  |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $R 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 |  |  |  |  |  |  |  |
| B | 01 | 10 | 10 |  |  |  |  |  |  |  |
| C | 10 | 11 | 11 |  |  |  |  |  |  |  |
| D | 11 | 00 | 00 |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.13$ from the textbook ]

## State Table

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R1}_{\text {out }}$ | $\mathrm{R1}_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{3_{\text {out }}}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State Assigned Table

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R1} \mathrm{out}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

[ Figure $6.12 \& 6.13$ from the textbook ]

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R1} \mathrm{out}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $w$ | $Y_{2}$ | $Y_{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 1 | 1 |  |  |

Let's derive the next-state expressions.


| $y_{2}$ | $y_{1}$ | $w$ | $Y_{2}$ | $Y_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |

Pay attention to the way the columns of the truth table are labeled.


$\checkmark \cap \infty>$

| Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R1} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R3}_{\text {in }}$ | Done |
| 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $w$ | $Y_{2}$ | $Y_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |


| $Y_{1} \quad y_{2} y_{1}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 1) | 0 | 0 | (1) |

${ }^{Y_{2}} \underbrace{y_{2} y_{1}}$


|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |  |
| 0 | 1 |  |  |  |
| 1 | 0 |  |  |  |
| 1 | 1 |  |  |  |

Let's derive the output expressions

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2{ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R}_{3}$ in | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |  |
| 0 | 1 |  |  |  |
| 1 | 0 |  |  |  |
| 1 | 1 |  |  |  |

Let's derive the output expressions.
We need to derive only these 3 unique ones.


| $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |



| $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |

$$
\begin{aligned}
& R 1_{\text {out }}=R 2_{\text {in }}=\bar{y}_{1} y_{2} \\
& R 1_{\text {in }}=R 3_{\text {out }}=\text { Done }=y_{1} y_{2} \\
& R 2_{\text {out }}=R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$



|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R 3 out | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

$$
Y_{1}=w \bar{y}_{1}+\bar{y}_{1} y_{2}
$$

$$
Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}
$$



|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R1} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R}_{3}{ }_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 10 | 10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 10 | 11 | 11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 11 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |









## Encoding \#2: $A=00, B=01, C=11, D=10$

(Also Uses Two Flip-Flops)

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{3}$ out | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State-Assigned Table

[ Figure $6.12 \& 6.18$ from the textbook ]

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{3}$ out | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State-Assigned Table

[ Figure $6.12 \& 6.18$ from the textbook ]

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{3}$ out | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State-Assigned Table

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0 \quad w=1$ |  |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $R 3_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 |  |  |  |  |  |  |  |
| B | 01 | 11 | 11 |  |  |  |  |  |  |  |
| C | 11 | 10 | 10 |  |  |  |  |  |  |  |
| D | 10 | 00 | 00 |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.18$ from the textbook ]

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1 \text { out }}$ | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{3}$ out | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State-Assigned Table

[ Figure $6.12 \& 6.18$ from the textbook ]

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R1} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $w$ | $Y_{2}$ | $Y_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |  |  |
| 0 | 0 | 1 |  |  |
| 0 | 1 | 0 |  |  |
| 0 | 1 | 1 |  |  |
| 1 | 0 | 0 |  |  |
| 1 | 0 | 1 |  |  |
| 1 | 1 | 0 |  |  |
| 1 | 1 | 1 |  |  |

Let's derive the next-state expressions

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R1} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $w$ | $Y_{2}$ | $Y_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 |






|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0 \quad w=1$ |  |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | R1 ${ }_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |  |
| 0 | 1 |  |  |  |
| 1 | 0 |  |  |  |
| 1 | 1 |  |  |  |

Let's derive the output expressions

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2{ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


| $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 |  |  |  |
| 0 | 1 |  |  |  |
| 1 | 0 |  |  |  |
| 1 | 1 |  |  |  |

Let's derive the output expressions
Once again, we only need to derive these three unique ones.

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | R1 ${ }_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


|  | $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | 0 |  |  |
| B | 0 | 1 | 0 |  |  |
| D | 1 | 0 | 0 |  |  |
|  | 1 | 1 | 1 |  |  |
|  |  |  |  |  |  |

Note that $C$ and $D$ are swapped in the truth table due to the new state encoding that was chosen.

|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | R1 ${ }_{\text {out }}$ | $\mathrm{R1} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R3}_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


|  | $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 1 | 0 | 0 | 1 |
| D | 1 | 0 | 0 | 1 | 0 |
|  | C | 1 | 1 | 1 | 0 |


|  | Present <br> state <br> $y_{2} y_{1}$ | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{2} Y_{1}$ | $Y_{2} Y_{1}$ | R1 ${ }_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | R2 ${ }_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R3}_{\text {in }}$ | Done |
| A | 00 | 00 | 01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 01 | 11 | 11 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 11 | 10 | 10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 10 | 00 | 00 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |


|  | $y_{2}$ | $y_{1}$ | $R 1_{\text {out }}$ | $R 1_{\text {in }}$ | $R 2_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 1 | 0 | 0 | 1 |
| D | 1 | 0 | 0 | 1 | 0 |
|  | C | 1 | 1 | 1 | 0 |
|  |  |  |  | 0 |  |

$$
\begin{aligned}
& R 1_{\text {out }}=R 2_{\text {in }}=y_{1} y_{2} \\
& R 1_{\text {in }}=R 3_{\text {out }}=\text { Done }=\overline{y_{1}} y_{2} \\
& R 2_{\text {out }}=R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

## Let's Complete the Circuit Diagram



$$
\begin{aligned}
& \mathrm{Y}_{1}=\mathrm{w} \overline{\mathrm{y}}_{2}+\mathrm{y}_{1} \overline{\mathrm{y}}_{2} \\
& \mathrm{Y}_{2}=\mathrm{y}_{1}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=y_{1} y_{2} \\
R 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{y_{1}} y_{2} \\
R 2_{\text {out }} & =R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

## Let's Complete the Circuit Diagram


$\mathrm{Y}_{1}=\mathrm{w} \overline{\mathrm{y}}_{2}+\mathrm{y}_{1} \overline{\mathrm{y}}_{2}$
$\mathrm{Y}_{2}=\mathrm{y}_{1}$

$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=y_{1} \mathrm{y}_{2} \\
\mathrm{R} 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{y_{1}} \mathrm{y}_{2} \\
\mathrm{R} 2_{\text {out }} & =\mathrm{R} 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

## Let's Complete the Circuit Diagram



$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=\mathrm{y}_{1} \mathrm{y}_{2} \\
\mathrm{R} 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{y_{1}} \mathrm{y}_{2} \\
\mathrm{R} 2_{\text {out }} & =\mathrm{R} 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

## Let's Complete the Circuit Diagram



$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=\mathrm{y}_{1} \mathrm{y}_{2} \\
\mathrm{R} 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{\mathrm{y}_{1}} \mathrm{y}_{2} \\
\mathrm{R} 2_{\text {out }} & =\mathrm{R} 3_{\text {in }}=\mathrm{y}_{1} \bar{y}_{2}
\end{aligned}
$$

## Encoding \#3: $A=0001, B=0010, C=0100, D=1000$

(One-Hot Encoding - Uses Four Flip-Flops)

## One-Hot State Encoding

- So far, we have been encoding states in a way that minimizes the number of flip-flops.
- But sometimes we can decrease the complexity of our logic if we encode states more sparsely.


## Encoding for State A



## Encoding for State B



## Encoding for State C



## Encoding for State D



## Register Swap Controller

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Register Swap Controller

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

Let's use four flip-flops and the following one-hot state encoding scheme:

$$
\begin{aligned}
& A=0001 \\
& B=0010 \\
& C=0100 \\
& D=\mathbf{1 0 0 0}
\end{aligned}
$$

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

State-Assigned Table

|  | $\begin{gathered} \text { Present } \\ \text { State } \\ y_{4} y_{3} y_{2} y_{1} \end{gathered}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A B C D |  |  |  |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.21$ from the textbook ]

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## State-Assigned Table

|  | Present State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R1}_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}^{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 0001 |  |  |  |  |  |  |  |  |  |
| B | 0010 |  |  |  |  |  |  |  |  |  |
| C | 0100 |  |  |  |  |  |  |  |  |  |
| D | 1000 |  |  |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.21$ from the textbook ]

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R}_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## State-Assigned Table

|  | Present <br> State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0 \quad w=1$ |  |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | $\mathrm{R} 2_{\text {out }}$ | $R 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R3}_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 |  |  |  |  |  |  |  |
| B | 0010 | 0100 | 0100 |  |  |  |  |  |  |  |
| C | 0100 | 1000 | 1000 |  |  |  |  |  |  |  |
| D | 1000 | 0001 | 0001 |  |  |  |  |  |  |  |

[ Figure $6.12 \& 6.21$ from the textbook ]

## State Table (same as before)

| Present <br> state | Next state |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=0$ | $w=1$ | $\mathrm{R}_{1}$ out | $\mathrm{R}_{1 \text { in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | A | B | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | C | C | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | D | D | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | A | A | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## State-Assigned Table

|  | Present <br> State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | $\mathrm{R} 3_{\text {out }}$ | $\mathrm{R3} 3_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

[ Figure $6.12 \& 6.21$ from the textbook ]

## Let's Derive the Next-State Expressions

|  | Present <br> State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R1} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Derive the Next-State Expressions

- $Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)$
- $Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)$
$\cdot Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)$
- $Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)$

We need to do four 5 -variable K-maps!

|  | Present State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Derive the Next-State Expressions

- $Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1}+y_{4}$
- $Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1}$
- $Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2}$
- $Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3}$

Or we can be smarter than that ©

|  | Present <br> State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Derive the Next-State Expressions

- $Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1}+y_{4} \quad$ (why?)
$\cdot Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1} \quad$ (why?)
- $\boldsymbol{Y}_{3}\left(\boldsymbol{w}, \boldsymbol{y}_{4}, y_{3}, y_{2}, y_{1}\right)=\boldsymbol{y}_{2} \quad=1$ only in $B$
$\cdot Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} \quad=1$ only in $C$
Or we can be smarter than that ()

|  | Present State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R}_{3}{ }_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Derive the Output Expressions

|  | Present State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R1} 1_{\text {in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R3} 3_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Derive the Output Expressions

$$
\begin{aligned}
& \cdot R 1_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \cdot R 1_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \cdot R 2_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \cdot R 2_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \cdot R 3_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \cdot R 3_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \left.\cdot{\operatorname{Done}\left(y_{4}\right.}, y_{3}, y_{2}, y_{1}\right)
\end{aligned}
$$

We need to do seven 4-variable K-maps!

|  | Present <br> State $y_{4} y_{3} y_{2} y_{1}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0$ | $w=1$ |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R} 1_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | R2 ${ }_{\text {out }}$ | $\mathrm{R} 2_{\text {in }}$ | R3 ${ }_{\text {out }}$ | $\mathrm{R3}_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Derive the Output Expressions

$$
\begin{array}{ll}
\cdot R 1_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} & \text { equal to } 1 \text { only in State } C \\
\cdot R 1_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4} & \text { equal to } 1 \text { only in State } D \\
\cdot R 2_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} & \text { equal to } 1 \text { only in State } B \\
\cdot R 2_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} & \text { equal to } 1 \text { only in State C } \\
\cdot R 3_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4} & \text { equal to } 1 \text { only in State } D \\
\cdot R 3_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} & \text { equal to } 1 \text { only in State } B \\
\cdot \operatorname{Done}^{\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4}} & \text { equal to } 1 \text { only in State }
\end{array}
$$

Or we can be smarter than that by exploiting the one-hot encoded property

|  | $\begin{gathered} \text { Present } \\ \text { State } \\ y_{4} y_{3} y_{2} y_{1} \end{gathered}$ | Next State |  | Outputs |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $w=0 \quad w=1$ |  |  |  |  |  |  |  |  |
|  |  | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $Y_{4} Y_{3} Y_{2} Y_{1}$ | $\mathrm{R}_{\text {out }}$ | $\mathrm{R} 1_{\text {in }}$ | $\mathrm{R} 2_{\text {out }}$ | $\mathrm{R} 2{ }_{\text {in }}$ | $\mathrm{R3}_{\text {out }}$ | $\mathrm{R} 3_{\text {in }}$ | Done |
| A | 0001 | 0001 | 0010 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0010 | 0100 | 0100 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| C | 0100 | 1000 | 1000 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| D | 1000 | 0001 | 0001 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Let's Complete the Circuit Diagram



# Encoding \#4: $A=0001, B=0010, C=0100, D=1000$ 

(same as before, but shows an alternative implementation with a 4-bit ring counter)

## Exploit the Structure of the FSM


[ Figure 6.11 from the textbook ]

## Alternative version of a 4-bit ring counter


[ Figure 5.28b from the textbook]

## Alternative version of a 4-bit ring counter



## Alternative version of a 4-bit ring counter



## Alternative version of a 4-bit ring counter



## 2-to-4 Decoder with Enable Input


[ Figure 4.14c from the textbook ]

## 2-to-4 Decoder with Enable Input



Switch to 1-based indexing of the outputs
(this is done to be consistent with the previous example)

## 2-to-4 Decoder with Enable Input


(always enabled in this example)

## Alternative version of a 4-bit ring counter



## 2-Bit Synchronous Up-Counter (with synchronous clear)



This counter can be cleared only on the positive clock edge.

## Let's Complete the Circuit Diagram



## The Solution for Encoding \#3



## How Does It Work?



## Questions?

## THE END

