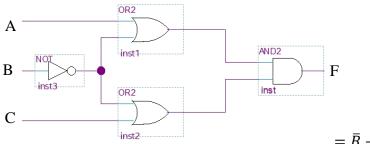


- P1. (10 points): Given the Venn diagrams below:
 - A. Which of the following can be used to represent the function,


B. Write the Boolean expressions for the other Venn Diagrams

Boolean algebra, AND/OR/NAND/NOR gates Assigned Date: Second Week Finish by Sep. 7, 2022

P2. (15 points): For the circuit below,

- A. Find the boolean expression describing the circuit below
- B. Prove that the equation found in part A. matches the simplified equation below

- $= \overline{B} + AC$
- P3. (15 points): Given truth table below:

а	b	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- A. Write the boolean expression for F
- B. Draw the function using only NAND gates
- C. Draw the function using only NOR gates

P4. (10 points): Find \overline{f} by first first negating the right-hand side and then applying DeMorgan's theorem to simplify the expression.

A. $f = xz + \overline{w}y + \overline{xx}$ B. $f = (a+b)(\overline{ab} + c)(\overline{a + bc})$

P5. **(10 points)**: Given the following functions, write the canonical Sum-of-Products expressions:

- A. $f(x_1, x_2, x_3) = \sum m(0, 1, 6)$
- B. $f(x_1, x_2, x_3) = \overline{\sum} m(2, 4, 5, 7)$

P6. **(10 points):** Given the following functions, write the canonical Products-of-Sums expressions:

- A. $f(x_1, x_2, x_3) = \prod M(0, 6, 7)$
- B. $f(x_1, x_2, x_3) = \prod M(0, 1, 4, 7)$

P7. **(10 points):** Use Boolean Algebra to prove the following expressions as equivalent. Show each rule of Boolean Algebra used to perform each step:

- A. $B + BCD + \overline{B}CD + AB + \overline{A}B + \overline{B}C = B + C$
- B. $B\overline{C}(C + A\overline{C}) + (\overline{A} + \overline{C})(\overline{A}B + \overline{A}C) = B\overline{C} + \overline{A}C$
- P8. (20 points) Consider the logic function $f(A, B, C) = (\overline{ABC} + A\overline{BC} + A\overline{BC} + \overline{AB})$
 - A. Draw the logic circuit for the function given above.
 - B. Let the cost of a logic circuit be the total number of gates plus the total number of inputs to all gates in the circuit. What is the cost of the circuit in A?
 - C. Simplify *f* using Boolean algebra as much as possible.
 - D. Draw the logic circuit for the simplified version of f in C.
 - E. What is the cost of the circuit in D?