P1. (10 points) Write the following expressions as Verilog behavioral assign statements:

- E.g., $F = \overline{A}$ as a Verilog assign statement would be "assign F = "A":
 - A. $F = A \cdot B$ B. F = A + BC. $F = (A + B) \cdot (\overline{A} + \overline{B})$ D. $F = \overline{(A \cdot B \cdot C)} + (\overline{A} \cdot \overline{B \cdot C})$

P2. (10 points) Match the following descriptions to the Verilog code representation it describes. I.e., Structural or Behavioral Verilog code

- A. Verilog code used to abstractly describe a circuit using logic expressions and programming constructs.
- B. Verilog code used to describe a circuit in terms of circuit elements, such as logic gates.
- P3. (10 points) Given the behavioral-continuous Verilog code below:

```
module Q1(f, a, b, c);
    output f;
    input a, b, c;
    assign f = (~(a&b)|c)&(b|(~a&c);
endmodule
```

- A. Rewrite using structural Verilog
- B. Rewrite using behavioral-procedural Verilog

P4. (20 points) Given the truth table shown below:

W	Х	Υ	Ζ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- A. Find the simplified boolean expression for this table
- B. Write the structural Verilog code for the circuit
- C. Write the behavioral-continuous Verilog code for the circuit.
- D. Write the behavioral-procedural Verilog code for the circuit

CprE 281 HW03 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

- P5. (20 points) Given the expression $F(A, B, C) = \sum m(0, 1, 3, 5)$:
 - A. Write the expression as a simplified SOP expression
 - B. Write the expression as a simplified POS expression
 - C. Implement the expression using only NOR gates
 - D. Implement the expression using only NAND gates
 - E. Which expression did you use for part C? For part D? Why?
- P6. (15 points) Show how to implement the following:
 - a) 3-input XOR using NAND gates Hint: How would you implement a 3-input XOR with 2-input XOR gates?
 - b) 4-input NOR gate using five 2-input NOR gates.
 - c) 16-to-1 MUX using five 4-to-1 MUX's
- P7. (15 points) Given the truth table shown below:

А	В	С	Н	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

- a) Write the expression for H, then use boolean algebra to obtain the simplified POS expression
- b) Write the shorthand SOP expression for H as the sum of the maxterms.
- c) Implement a circuit for H which uses exactly 4 NOR gates and no other gates.