Midterm Review Assignment Assigned Date: Fifth Week Due Date: Monday, Sep. 26, 2022

P1. (20 points) Use a K-map to find the minimal sum-of-products (SOP) expression for the following four problems. Show the terms that are grouped in each K-map.
a) (5 points)

$$
\begin{aligned}
& B C
\end{aligned}
$$

b) (5 points)

CD				
AB	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	0	0	0
10	1	0	0	1

c) $\left(5\right.$ points) $F(A, B, C)=\sum m(1,2,3,5,7)$
d) (5 points) $F(A, B, C, D)=\sum m(1,3,4,5,6,7,9,11,13,15)$

P2. (15 points) Use a K-map to find the minimal product-of-sums (POS) expression for the following three problems. Show the terms that are grouped in each K-map.
a) (5 points)
b) (5 points)

c) (5 points) $\quad F(A, B, C, D)=\prod M(5,7,11,13,15)$

Midterm Review Assignment Assigned Date: Fifth Week
 Due Date: Monday, Sep. 26, 2022

P3. (15 points) Given the logic expression:

$$
F(X, Y, Z)=\overline{(X+\bar{X} \bar{Y})}(X+Y+\bar{Z})+\overline{(X+\bar{Y}+X \bar{Y})}(\bar{X} \bar{Y} Z)
$$

a. Use the theorems of Boolean algebra to simplify the formula given above into a minimum-cost expression
b. Draw the circuit diagram for the simplified expression using only NOR gates.

P4. (15 points) Given the logic expression:

$$
F(A, B, C, D)=\bar{A}(\bar{A}+C) \overline{(A \bar{B}+\bar{A} \bar{B}+\bar{C})(B+\bar{B} C)}
$$

a. Use the theorems of Boolean algebra to simplify the formula given above into a minimum-cost SOP expression
b. Draw the circuit diagram using only NAND gates

P5. (10 points) Given the circuit shown below:

a. Write the behavioral Verilog Module that corresponds to the circuit.
b. Write the structural Verilog Module that corresponds to the circuit.

Midterm Review Assignment Assigned Date: Fifth Week Due Date: Monday, Sep. 26, 2022

P6. (15 points) Given the Venn Diagrams shown below:

(A)

(B)

(C)
$A=$
$B=$
$\mathrm{C}=$
a. Write the expressions represented by each Venn diagram.
b. Let $F(X, Y, Z)=A+B+C$. Use the expressions that you derived in part (a) to draw the K-map for the Boolean function F. Then use the K-map to derive the minimum cost SOP expression for F .
c. Draw the circuit for your expression from part (b).

P7. (10 points) Number Conversions:
a. Convert 219_{10} to binary
b. Convert 11014 to decimal
c. Convert 851304 , to ternary (base 3)
d. Convert BEAD_{16} to binary
e. Convert 110101011111000101_{2} to hexadecimal (base 16)

