Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 10, 2022

P1 (8 points): Rewrite -115_{10} in the following binary formats If it is not possible simply write Not Possible:
a. Unsigned:
b. Sign \& Magnitude:
c. 1's Compliment:
d. 2's Compliment:

P2 (12 points): Perform the following operations on the numbers and indicate if overflow occurs for each operation. All numbers are 6 bits wide (stored in 2's complement). Show your work and all carry bits.

$\begin{array}{r} 101011 \\ 010111 \end{array}$	$\begin{array}{r} 011101 \\ 010110 \end{array}$	$\begin{array}{r} 110001 \\ 110111 \end{array}$
- 101000	- 101001	- 110010
111010	110101	011100

P3 (15 points): Convert the following numbers to IEEE 754 SinglePrecision Floating Point format. Write your answer in binary
a) -98
b) 15.25
c) 29
d) 86.0625
e) -120

P4 (15 points): Convert the following numbers from IEEE 754 SinglePrecision Floating Point format to decimal. You may leave the result as a fraction.
a) $11000010111111100000000000000000_{2}$
b) $01000010110001000100000000000000_{2}$
c) 41800000_{16}
d) $\mathrm{C} 2 \mathrm{C} 44000_{16}$
e) $\mathrm{C} 2814000_{16}$
Representation and Arithmetic
Assigned: Week 7
Due Date: Oct. 10, 2022

P5 (16 Points): Perform the following multiplications using 2's complement binary numbers. Show all your work using binary numbers:
a. $10011_{2} * 01001_{2}$
b. 01010_{2} * 01110_{2}
c. -7_{10} * 4
d. 16 * 32

P6 (14 Points): Implement the function $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum m(0,1,2,5,6,10,13,14)$ as follows:
a. Use a K-map to obtain the simplified SOP expression for F
b. Implement F using only a minimal number of 2-1 Multiplexors and no other gates. Hint: Use Shannon's Expansion Theorem a few times.

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 10, 2022

P7 (20 Points): Consider the following circuit, which uses two 7-bit ripple carry adders "Adder P" and "Adder Q", a 3-bit unsigned input A, and a 6bit unsigned output F :

a. What is the expression for outputs W and X in this circuit? Why?
b. Describe P, the 7-bit output of "Adder P", algebraically in terms of A.
c. Describe V, the left 7-bit input to "Adder Q", algebraically in terms of A.
d. Considering that the output bits Y and Z are ignored by F , describe F algebraically in terms of A .
e. What is the largest possible decimal value for F in this circuit? Show how you obtained your answer.

