CprE 281 HW11
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Basic Design Steps, State-Assignment Problems, Moore \& Mealy Machines Assigned Date: Eleventh Week

Finish by Nov. 16, 2022

P1 (20 points): Design and implement a Moore machine that detects the pattern 101 in its 1-bit serial input stream. Explain the logic behind your solution. Show your work for all steps discussed during the lectures: graph, state table, state-assigned table, truth tables, k-maps, expressions, circuit diagram.

P2 (15 points): The FSM state diagram below has two inputs x_{1} and x_{0}. In addition, it has two DFFs, three 4-to-1 MUXes, a single XOR gate, a single AND gate, and a single output bit Z. Answer the following questions about this FSM.

A. Is this a Moore FSM or Mealy FSM?
B. The state encodings are $A=00, B=01, C=10$, and $D=11$. Write a state-assigned table for this state diagram.
C. Use K-maps to determine the expressions for the next-state variables.

CprE 281 HW11
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Basic Design Steps, State-Assignment Problems, Moore \& Mealy Machines Assigned Date: Eleventh Week

Finish by Nov. 16, 2022

P3 (15 points): An FSM has two D flip-flops, an input w, and an output z. The circuit diagram is shown below.

A. Find the logic expressions of Y_{1}, Y_{0}, and the output z
B. Show the state-assigned table of the FSM.
C. Draw the state diagram of the FSM.

P4 (20 points): Draw a state diagram for a state machine that reads in a sequence of bits, one bit at a time, and outputs a 0 whenever the sequence 1010 is detected. It outputs a 1 otherwise. The machine keeps detecting the sequence and never stops.
a. Using a Moore machine
b. Using a Mealy machine

P5 (15 points): Consider the following state table for a FSM:

Present State	Next State		Output
	$w=0$	$w=1$	z
A	A	B	0
B	B	C	1
C	C	D	0
D	D	A	1

A. Draw the state diagram of the FSM
B. Perform state minimization to minimize the number of states. Show your partitions in the procedure.
C. Draw the new state diagram of the minimized FSM

CprE 281 HW11 ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Basic Design Steps, State-Assignment Problems, Moore \& Mealy Machines

Assigned Date: Eleventh Week
Finish by Nov. 16, 2022

P6 (15 points): Reduce the state diagram below to use only 5 states:

