CprE 281 HW12
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Analysis of Syn. Seq. Circuits, ASM charts/examples Assigned Date: Thirteenth Week Finish by Nov. 30, 2022

P1 (20 points): This problem concerns the algorithmic state machine (ASM) chart shown below:

A: What are the inputs and the outputs of this state machine?
B: Draw the state diagram that represents this state machine.
C : Make state assignments as follows: $\mathrm{A}=00, \mathrm{~B}=01, \mathrm{C}=10$, and $\mathrm{D}=11$.
Derive output expressions for this ASM chart using DFFs, AND gates, OR gates, and NOT gates.

D: Show that the next state expressions can be written as:

$$
S_{1}^{\text {new }}=\left(\bar{Z}+S_{0}\right) \overline{\left(Z S_{1}\right)}, S_{0}^{\text {new }}=\left(\bar{Z}+\overline{S_{0}}\right) \overline{\left(Z S_{1}\right)}
$$

CprE 281 HW12
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Analysis of Syn. Seq. Circuits, ASM charts/examples Assigned Date: Thirteenth Week Finish by Nov. 30, 2022

P2. (20 points): Use synchronous sequential circuit (SSC) analysis to reverse engineer the operation of the circuit shown below.

A. Is this a Mealy or Moore Machine?
B. Write expressions for Next State and Output logic
C. Write the State-Assigned Table for the circuit
D. Draw the state transition diagram

Cpre 281 HW12 ELECTRICAL AND COMPUTER

ENGINEERING
IOWA STATE UNIVERSITY

Analysis of Syn. Seq. Circuits, ASM charts/examples
Assigned Date: Thirteenth Week
Finish by Nov. 30, 2022

P3: (10 points): Perform state minimization on the following state diagrams:
A.

B.

Analysis of Syn. Seq. Circuits, ASM charts/examples Assigned Date: Thirteenth Week Finish by Nov. 30, 2022

P4. (15 points) A sequential circuit has 2 rising edge triggered flip-flops (outputs A and B), two inputs (X and Y) and one output Z . One of the flip-flops is D the other is JK . The logic expressions for this circuit are:

$$
\begin{aligned}
D_{a} & =X^{\prime} \cdot Y+X \cdot A \\
J_{b} & =X^{\prime} \cdot B+X^{\prime} \cdot A \\
K_{b} & =Y \cdot B \\
Z & =X \cdot B
\end{aligned}
$$

A. Sketch the circuit diagram
B. Construct the transition table
C. Construct the state diagram

P5. (25 points) Consider a counter that has a special counting sequence: $0,4,5,1,0,4,5,1$, and so on. Draw this counter with minimal number of states.
A. Draw the state diagram for the counter
B. Construct the state-assigned table including the next state and output
C. Draw the circuit diagram for the counter using D flip-flops
D. Draw the circuit diagram using T flip-flops
E. Draw the circuit diagram using JK flip-flops

P6. (10 points) Consider a register machine with four registers R0, R1, R2, and R3. Write a complete register machine program (in the table format shown in the lectures) that copies the contents of register 3 into register 2 using register 1 as a temporary storage. The value of R3 at the end of the program must be the same as its value at the beginning of the program. Hint: First, you may have to clear R2 and R1 to zero them. Write a comment for each line/block of your program.

